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Summary

LINKED DATA represent a huge source of information and knowledge both inside
and outside the Semantic Web research field. However, a broad and extensive
adoption of this technology is still prevented by the difficulties that users find

when approaching these large and complexly structured sources of data. Typically,
even the experts of this field are disoriented in understanding both the main structure
and the details characterizing how these data have been modelled. Filling this initial
gap means performing very meticulous, costly and time-consuming analysis by using a
specific query language.

A possible way for solving the problem is adopting other approaches that are more
centered on the use of visual representations, leveraging the human visual perceptual
channel. Differently from the ordinary methods widely investigated in the literature, we
propose an approach based on Information Visualization techniques and cartographic
principles. Large and complex data are exactly the kind of information Cartography
has been dealing with for centuries. This capability in representing data can be fur-
ther augmented by the interactive mechanisms that can be implemented using modern
computer-based solutions.

Navigating geographic spaces and effectively observing their information is a task
humans are quite used to. The approach presented in this thesis produces abstract maps
resembling the traditional geographic ones and thus allows users to reuse their cognitive
skills and prior knowledge in reading maps for the navigation of abstract map-like
visualizations of Linked Data sets. In order to produce these particular visualizations,
a specific process called spatialization has been employed to assign data a range of
spatial attributes, such as size, shape and position on a two-dimensional surface. The
specific spatialization we used is based on space-filling curves, fractal curves having
the feature of entirely filling the space. In particular, by exploiting the fractal nature of
these curves, a novel technique for properly expressing data and efficiently spatialize
them in a scalable way has been devised.
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Sommario

ILinked Data rappresentano un’enorme fonte di informazione e conoscenza sia al-
l’interno che all’esterno del settore di ricerca del Semantic Web. Un’ampia adozio-
ne di questa tecnologia risulta purtroppo essere ancora frenata dalle difficoltà che

gli utenti incontrano nell’approcciare questi insiemi di dati caratterizzati da un elevato
numero di elementi e da una struttura molto complessa. Solitamente anche gli esperti
di questo ambito sono inizialmente disorientati nel capire quale sia esattamente loro
la struttura e i dettagli riguardanti la loro modellazione. Per colmare questo divario è
necessario effettuare un’analisi molto meticolosa, onerosa e che richiede molto tempo
utlizzando linguaggi di interrogazione specifici.

Una possibile soluzione consiste nell’adottare un approccio diverso, più focalizza-
to sull’utilizzo di rappresentazioni visuali che possano sfruttare il canale di percezione
visivo umano. Diversamente dai metodi comuni molto utilizzati negli studi presenti in
letteratura, proponiamo un approccio basato su tecniche di Information Visualization e
su principi cartografici. Grandi e complesse quantità di dati sono esattamente il tipo di
informazioni che la cartografia gestisce ormai da secoli. Questa capacità può essere ul-
teriormente aumentata da meccanismi interattivi implementabili da moderne soluzioni
software.

Navigare spazi geografici ed osservarne particolari informazioni è un processo che
le persone sono ormai abituate a fare. L’approccio presentato in questa tesi produce
delle mappe astratte che somigliano a quelle geografiche tradizionali e quindi permet-
tono agli utenti di riusare le loro capacità cognitive e le pregresse abilità nella lettura
di mappe. Per poter generare queste visualizzazioni deve essere impiegato un proces-
so specifico di spazializzazione in modo da assegnare ai dati un insieme di attributi
spaziali come dimensione, forma e posizione su un piano bidimensionale. La spazializ-
zazione utilizzata è basata su un tipo particolare di curve frattali chiamate space-filling
curve, caratterizzate dalla proprietà di coprire interamente lo spazio a disposizione. In
particolare, sfruttando la composizione frattale di queste curve, è stata ideata una nuova
tecnica per esprimere i dati e spazializzarli in maniera efficiente e scalabile.
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CHAPTER1
Introduction

INSIDE and outside the Computer Science community, 1991 will be always remem-
bered as the birth of the World Wide Web (WWW). It was when its inventor, Tim
Berners-Lee, a young researcher working at CERN, the European Particle Physics

Laboratory in Geneva, published on-line the first web page1 of the history of the WWW.
The project had an immediate effect, so viral that the number of available Web servers
grew to 500 on the end of 1993 and widely exploded to 10.000 in late 19942. At the
time, Web pages were called hypertexts and they were just static documents mostly con-
taining text. Nowadays, the World Wide Web is what we commonly call the Web, and it
is most frequently and incorrectly known as the Internet, the technological networking
infrastructure globally connecting computers together in a massive network. A strong
evolution changed the mechanisms and the appearance characterizing Web pages. To-
day, beyond text, they can contain images and videos and they became dynamic since
new content can be quickly loaded using asynchronous calls.

The evolution of Web technologies strongly contributed to the creation and growth
of an enormous number of services such as on-line stores and businesses, wikis, fo-
rums, search engines, social networks and so on. Among them, there are also the Four
Horsemen of the digital economy3, some of the most important companies in the World:
Amazon, Apple, Facebook and Google. These companies are well known examples of
producers of what has been called the “new gold of the 21st century”, data. During
the first decade of the 2000s, the amount of data generated and stored have become so
massive that the term Big Data has been coined for identifying data sources that are
so voluminous, various, quickly generated and varying in veracity that the traditional

1http://info.cern.ch/hypertext/WWW/TheProject.html
2http://timeline.web.cern.ch/timelines/the-birth-of-the-world-wide-web
3http://dld-conference.com/videos/XCvwCcEP74Q

1

http://info.cern.ch/hypertext/WWW/TheProject.html
http://timeline.web.cern.ch/timelines/the-birth-of-the-world-wide-web
http://dld-conference.com/videos/XCvwCcEP74Q
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Chapter 1. Introduction

methods for processing data result to be inadequate to handle them.
This thesis is mainly centered on large data sources and in particular it is focused

on their visual representation. The visual representation of large amounts of data in an
efficient way that could allow users to easily understand data and gain insights from
them is in fact a well-known problem and a challenge in the research field of Informa-
tion Visualization (InfoVis). This problem affects many kind of data producers such
as companies and research centers that need their data to be analyzed, examined or
investigated by humans.

While this study obviously can not address the huge variety of problems character-
izing different disciplines and research areas, it focuses on one of those areas that can
be identified as the Semantic Web. This term has been introduced by Tim Berners-Lee
in 2001 as an extension of the traditional Web allowing machines to automatically pro-
cess data by exploiting their new semantic and interlinked constitution. Later in 2006,
he proposed Linked Data, a set of technologies for achieving the Semantic Web vision
and allowing data owners to openly publish their data. The initiative had a good im-
pact on the community, a nucleus of 28 data sets were published in 2007 and it further
grew to 570 in 20144, today the LODStats5 project counts 2740 active data sets overall
containing 130.502.164.357 triples.

Linked Data sets are strongly impacted by visualization problems and represent the
principal domain of application of this thesis. In fact, the design and development of
new methods for visually presenting Linked Data sources in an effective way that allows
humans to easily comprehend both their structure and content is widely investigated in
the literature of this research area.

Since centuries ago, cartography has been dealing with large amounts of informa-
tion, and today, computer-based solutions enhance this capability by interactively pre-
senting even more complex and numerous data. It is quite common to be able to navi-
gate geographic spaces and effectively perceive geographic information represented in
cartographic forms. These humans cognitive skills can be also leveraged for explor-
ing and analysing non-geographic data. Maps of abstract data resembling traditional
geographic maps can be devised in order to activate those abilities. This cartographic
metaphor leverages the visual perception abilities of humans and their consolidated
map-reading skills for achieving a high level of efficacy in the communication of large
amounts of complexly structured data.

The visualization approach presented in this thesis provides an entry point to the
study of Linked Data sets and an interactive way for exploring them. It literally follows
the Visual Information-Seeking Mantra of Ben Shneiderman [91], a very important in-
fovis guideline in the design and development of visual representations. In order to pro-
duce visualizations leveraging on the cartographic metaphor, a spatialization approach
has been embraced. This essential technique enables to “spatialize” abstract data by
assigning them spatial coordinates necessary for displaying them on a two-dimensional
space. The spatialization process has been carried out adopting a particular kind of
fractal curve called space-filling curve, having the property of completely filling the
available space. This specific feature has been used for assigning a position to the ele-
ments contained in the data set, and subsequently displacing them on the space forming

4http://lod-cloud.net/
5http://stats.lod2.eu/

2

http://lod-cloud.net/
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a map. A novel technique exploiting the fractal structure of the curves has been devised
for efficiently expressing data and enabling their spatialization in a very scalable way.

The resulting visualizations represent the abstract components constituting a Linked
Data set depicted as if they were geographic elements collectively forming a map. The
intended users are Semantic Web experts that can consult these visualizations for get-
ting a gist of the generic characteristics of the structure of a data set (i.e., ontology and
classes) but also precise information such as detailed features about resources and their
relationships (i.e., instances and triples).

In the remainder of this work, Chapter 2 introduces the background of the two re-
search areas involved in the thesis, that are Information Visualization and Semantic
Web, and points out some not so conventional geometric notions. Chapter 3 presents
the state of the art about the available tools for the visualization of Linked Data and the
existing approaches for the spatialization of abstract data with particular focus on the
ones based on space-filling curves. A preliminary analysis about some ordinary InfoVis
techniques applied on Linked Data is given in Chapter 4. The main contribution of the
thesis consisting in an approach for interactively visualizing Linked Data is presented
in Chapter 5 while some specific case studies performed with existing Linked Data
sets such as DBpedia and LinkedMDB are described in Chapter 6. Chapter 7 proposes
some experimental studies on the concept of thematic maps, the possibility of placing
elements according to their similarity and demonstrates the flexibility of the approach
with an application prototype developed using the NCBI taxonomy data base. Finally,
in Chapter 8, some conclusions about the whole study are drawn.

3
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CHAPTER2
Background

THIS chapter illustrates the background of the research area the thesis addresses:
Information Visualization and Semantic Web. The former will be covered in
Section 2.1 while the latter in Section 2.3. The main purpose of the chapter is to

provide readers some essential notions, about the main topics that will be treated in the
following, very important in order to better understand the details described in the core
of the thesis. For this reason, also some not so ordinary concepts of geometry will be
illustrated in Section 2.2.

2.1 Information Visualization

Information Visualization, also known as InfoVis, is a research field focused on the
study of mechanisms for mapping abstract data in a visual form. The InfoVis outcome
are the so called “visualizations", visual representations of data that amplify the hu-
man cognition. Properly designed visualizations help us in understanding data in an
easier way, getting insights from them and revealing unexpected patters hidden within
information.

The effectiveness of visualization in supporting humans is due to the strong human
perception of processing visual information. In fact, it is well-known that the visual
channel is the most powerful one in the human body. By analyzing the human visual
cognition, InfoVis researchers can exploit this ability and produce proper visual repre-
sentations.

It is important to specify some distinctions with other similar fields which informa-
tion visualization is sometimes mixed. Data Visualization, also known as DataVis, is
a broader concept, independent from computers. Indeed, several techniques for repre-
senting information, were already existing before the computer era [20, 21] at the end

4
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2.1. Information Visualization

of the 19th century.
While InfoVis covers visualization of data that are often abstract in nature, Scientific

Visualization, also called SciVis, deals with visualizations of physical data (e.g., geo-
graphical, architectural, meteorological, biological) coming from the real world [26].

Visual Analytics is a projection of InfoVis [109] and it mainly differs by strongly
keeping the users in the loop of controlling the data mining, visual exploration and
analysis process. Visual analytics tools are extremely interactive instrument enabling
users to deeply analyse data through visual representations interactively created on their
inputs.

The Information Visualization research field has become very important in the last
few years in which data production has significantly grown. InfoVis techniques have
been applied in different disciplines such as Social networks analysis, Machine Learn-
ing and Data Mining. Furthermore, several data analysis tools and libraries have been
equipped with InfoVis methods for visualizing data. For instance Tableau1, software for
Business Intelligence and Analytics, is strongly based on data visualization techniques.
R2 [100], a software environment for performing statistical computing, includes sev-
eral libraries for visualizing statistical data. The Machine Learning and Deep Learning
library of Google, TensorFlow3 [2] contains different kind of diagrams and charts for
displaying the outcome of its algorithms. Gephi4 [8] is a visualization and exploration
platform for analyzing graphs and networks. Tulip5 [5] is an information visualization
framework dedicated to the analysis and visualization of relational data. Even some
Web applications started to use InfoVis approaches, such as the Newsmap6 service that
is totally based on a treemap layout. Finally, Data journalism, a specialty of the tradi-
tional journalism very centered on data, is continuously growing. The most appropriate
example is the New York Times7 that often publishes interactive visualizations embed-
ded within its on-line journalistic pieces.

2.1.1 Visualization pipeline

Generally, a set of data has to be firstly treated by several processing steps before being
ready to be visualized. This stepwise procedure transforming data in a visual repre-
sentation has been called visualization pipeline and described in literature by different
works [26, 29]. Figure 2.1 shows a generic visualization pipeline composed of three
main phases: data transformation, visualization transformation and visual mapping
transformation.

The first step transforms raw data to a suitable abstraction. For example, a set of sci-
entific articles can be transformed into a graph structure defining the citations between
papers and the consequent relationships between authors.

The second step translates analytical abstractions into visual abstractions. It is a
crucial procedure since abstract data are converted by enhancing them with information
about their shape, position and possibly color. It is important to specify that this step
does not produce any visual representation but it only equips data with the necessary

1 http://www.tableau.com/
2 https://www.r-project.org/
3 https://www.tensorflow.org/
4 https://gephi.org/
5 http://tulip.labri.fr
6 http://newsmap.jp/
7 http://www.nytimes.com/

5

http://www.tableau.com/
https://www.r-project.org/
https://www.tensorflow.org/
https://gephi.org/
http://tulip.labri.fr
http://newsmap.jp/
http://www.nytimes.com/
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Chapter 2. Background

Input
Data

Analytical
Abstraction

Visualization
Abstraction

View

data
transformation

visualization
transformation

visual
mapping

transformation

Figure 2.1: A generic visualization pipeline showing the intermediate processes for transforming raw
data into a visualization consultable by users.

information needed for the subsequent actual visualization. The citation graph could be
for instance visually represented as a node-link diagram where papers will be depicted
as circles linked by lines defining their relationships. Hence, the position, radius and
colour of the nodes and the curve the links draw are defined in this phase.

The last step produces a view displaying the final visualization filtered according
to the user inputs. For instance, the overview of the whole citation graph could be
demanded or only a small portion of it could be selected by the user.

2.1.2 Hierarchies

Hierarchies are often the base structure of many data sets and they have been widely
studied within the literature of Information Visualization. In particular, by looking
at the existing visual representations of hierarchical structures it is possible to notice
that two basic graphical forms, which sometimes are also combined, have been mainly
used: stacked and nested schemes [72]. Both forms graphically represent hierarchi-
cal relations between elements but in a different way: the former by using directional
relationships (e.g., vertical, horizontal) while the latter by employing containment.

In this thesis, hierarchies play an important role as will be deeply illustrated in the
next chapters. For this reason, it is worth to know how hierarchies are commonly
represented in a visual way. A series of the most significant visualization techniques
are briefly described in the following.

• Node-link (Figure 2.2 (a)) is the most commonly used layout for visualizing hi-
erarchies. Nodes define the elements of the hierarchy while links represent the
hierarchical relations between them. This technique has several layout variations,
the most ordinary ones map the depth of the hierarchy on the y-axis and use the
x-axis in order to separate siblings.

– The radial layout places the root of a tree in the center of the representation
and arranges the hierarchical levels around it at different distances. Even
if hierarchical node-link diagrams provide effective overview of topologies,
they result to be not so effective for visualizing large data sets due to their
large aspect ratio;

– Another variant, often used for representing the result of hierarchical cluster-
ing algorithms, is the dendogram;

– Alternatively, the indented layout is widely used for representing hierarchical
lists such as file systems.

6



i
i

“output” — 2017/1/10 — 10:04 — page 7 — #19 i
i

i
i

i
i

2.1. Information Visualization

• Icicle tree (Figure 2.2 (b)) [62] is a technique devised for improving the analysis
of the results of hierarchical clustering algorithms. The elements of the hierarchy
are drawn as solid areas (i.e., rectangular shapes) and their placement reveals their
position in the hierarchy. In fact, given an element, it is possible to easily under-
stand which is its parent and children by just looking at the adjacent rectangles
close to it;

• Treemap (Figure 2.2 (c)) [53] is a method in which each element of a hierarchy
is represented as a rectangle whose area is proportional to some attribute it owns
(e.g., size, weight) [90]. The main idea behind this approach is to recursively par-
tition the space into rectangular boxes as defined by the branching of the hierarchy.
This approach is not as good as node-link diagram for analyzing topologies but it
entirely fills the space available providing good results even with large hierarchies;

• Sunburst (Figure 2.2 (d)) [97] also known as radial icicle is the radial variation
of the icicle tree. While the latter displaces rectangles along one direction, the
sunburst places the elements of the hierarchy in a radial way in order to exploit all
the degrees of the polar-coordinate system.

(a) Node-link diagram
(b) Icicle tree

(c) Treemap (d) Sunburst

Figure 2.2: Some well-known visualization techniques designed for representing hierarchical structures.
On the top row, there is a node-link diagram and an icicle tree while the bottom row present a treemap
and a sunburst.

All these techniques are the most basic and commonly used. Upon them more so-
phisticated variations have been developed. A very wide and consistent survey about

7
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Chapter 2. Background

Figure 2.3: The only existing regular tessellations are made by triangles, squares or hexagons.

the visualization methods devised for representing hierarchies can be found on the tree-
vis.net on-line bibliography8 [87].

2.2 Geometry

In order to be ready for the explanation of the visualization approach proposed in Chap-
ter 5, some not so conventional notions of geometry need to be illustrated.

2.2.1 Tessellations

A tessellation also known as a tiling is created by repeating one or more geometric
shapes, called tiles, for covering a flat surface with no overlaps and no gaps.

Steven Schwartzman’s The Words of Mathematics [88], says that the verb tessellate
and noun tessellation derived from Latin tessera “a square table" that is in turn de-
rived from the Greek tessares meaning “four" since a square tile has four sides. The
diminutive of tessera was tessella, a small, square piece of stone or a cubical tile used in
mosaics. Since a mosaic extends over a given area without leaving any region uncov-
ered, the geometric meaning of the word tessellate is "to cover the plane with a pattern
in such a way as to leave no region uncovered."

A regular tessellation is a tessellation constructed by congruent regular polygons9.
There exist only three kind of regular tessellation made by triangles, squares and hexagons
as shown in Figure 2.3.

2.2.2 Space-filling curves

This section gives more detailed information about a key concept of the approach de-
scribed in Chapter 5: space-filling curves also known as plane-filling curves or Peano
curves from the name of the Italian mathematician that in 1890 [79] discovered them.
Initially, they were considered only as math curiosities. Then, in 1970 Mandelbrot
coined the term “fractal" and published The Fractal Geometry of Nature [67], the foun-
dation book that gave rise to a new mathematical discipline [106] and consequently to
several studies on the topic. Space-filling curves are fractal curves having the property
of passing through each point of a spatial plane. Examples of this geometrical shapes
have been proposed by Hilbert in 1891, Moore in 1900, Lebesgue in 1904, Sierpinski
in 1912, Polya in 1913 and others followed later [84]. Among them, it is important,
for the aim of the thesis, to analyze the ones of Hilbert and Gosper since they will be
consistently employed in the next chapters.

8 http://treevis.net
9Regular means that the sides and angles of the polygon are equivalent while congruent means that the polygons have the same

size and shape.

8
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Let’s start examining the Hilbert curve. A suitable way for understanding what a
space-filling curve is exactly, consists in analyzing its construction process. First of
all, it is necessary to consider its generator that is the most basic shape characteriz-
ing a curve. The Hilbert generator is the flipped-over U, shown in Figure 2.4 on the
left-most side. The generator corresponds to the first iteration of the curve and to its
starting point. The subsequent iterations can be obtained by recursively substituting the
segments of the generator with scaled copies of itself. Thus, the second iteration of the
Hilbert curve can be obtained by firstly substituting each segment of the first iteration
with a scaled copy of the generator and secondly combining them in a joined curve.
More precisely, the n-th iteration can be generally produced by recursively applying
the following steps:

1. Given a square, divide it into four sub-squares;

2. Within each sub-square insert the Hilbert generator by properly selecting a reflec-
tion and rotation factor;

3. Connect the four generators composing the partial curve in order to obtain a con-
tinuous curve;

4. Perform the previous step on the four new sub-squares.

Figure 2.4: The first three iterations of the Hilbert curve. The first one, on the left-most side, is also
the curve generator. In fact, it is possible to see the flipped-over U repeated all over the curve of the
subsequent iterations.

The Gosper curve is a variant of the Koch Snowflake [60]. As the Hilbert one, it has
the property of tiling the space but using hexagonal shapes. Differently from Hilbert,
where a square can be easily split in four sub-squares, a hexagonal tile can not be
perfectly divided into 7 new scaled tiles. In fact, by joining together 7 hexagons it is
not possible to obtain a bigger regular hexagon. Only the approximation of a hexagon
can be generated as a polygon tracing the exact shape of a regular hexagon.

Each iteration of the Gosper curve, has been called by Mandelbrot as Gosper Island
[67]. Figure 2.5 shows the first three islands. The first one on the left is a single
hexagonal tile, representing the smallest island. The first iteration in the middle is an
island composed by 7 hexagons and the curve corresponds to the Gosper generator.
The last one on the right is the second iteration comprising forty nine hexagons. By
looking at the third iteration of the curve, shown at the right most side of Figure 2.5,
it is possible to see that each of the 7 copies of the Gosper generator must accordingly

9
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Chapter 2. Background

placed with a certain degree of rotation in order to obtain the continuous curve joined
by the red segments.

Figure 2.5: The first three Gosper Islands. The first on the left is just a hexagonal tile while the two
subsequent ones are respectively the result of the first and second iteration of the Gosper curve.

Space-filling curves are a key components for our spatialization approach since they
are adopted for the generation of regular tessellations. The fractal path the curves define

Figure 2.6: The first two iterations of the Hilbert and Gosper curve showing how their path defines the
coordinates on a flat surface in which tiles can be arranged.

can be used for placing tiles on a flat surface. As shown in Figure 2.6, each vertex of
a curve gives the exact point on which a tile can be placed. In both the Hilbert and
Gosper cases, the result of the tile placing is a regular tessellation differing only for tile
shape, square for the former and hexagonal for the latter.

So far the backgrounds addressing InfoVis and Geometry have been illustrated by

10
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introducing some key concepts such as visualization layouts and geometric notions. It
is now fundamental to have some basic information about the Semantic Web and the
technologies characterizing it.

2.3 Semantic Web

The term Semantic Web started to buzz the Computer Science research community in
2001 when Tim-Berners Lee published an article [13] in the Scientific American mag-
azine. He presented a story about two siblings, Pete and Lucy, having to arrange some
medical examinations for their mother by instructing some software agents exploiting
the Semantic Web. The story was reported as an example, in order to present the strong
distinction between the traditional Web of documents designed for humans and a new
kind of Web in which machines could process the semantics of data: the Semantic Web.

In 2006, Tim-Berners Lee introduced the concept of Linked Data (LD), a set of
technologies for pursuing the Semantic Web project which remained unrealized since
its very beginning. Berners Lee presented a document [11] in which he illustrates some
best practises for publishing data in a structured and interlinked way. First, he proposes
to name things with URIs where things are any kind of entity that can be defined such as
a person, an animal, a place, an object and so on. Second, he recommends to use HTTP
URIs in order to provide useful information about things when their URIs are resolved
by humans. Third, he suggests to link URI resources to other things so that data can
be interlinked with each other. Finally, he chooses the employment of the Resource
Description Framework (RDF) and the SPARQL language for respectively modelling
and querying data.

The Linked Data project had a significant impact on the community and a consid-
erable amount of data sets were published on the Web. Three years later, in 2009,
Tim-Berners Lee together with Christian Bizer and Tom Heath summarize the progress
about the initiative until that moment. 93 data sets, corresponding to 4.7 billion RDF
triples, which were interlinked by around 142 million RDF links [16], resulted to be
published. According to the data retrieved by the LOD cloud project10, the number of
published data sets reached 570 in 2014. The LODStats11 project counts today 2740
active data sets.

Among the major data sets, DBpedia [7] is certainly one of the most interesting. The
aim of the project is to convert the huge amount of unstructured information contained
in Wikipedia12 into a structured and semantic format. DBpedia extracts structured in-
formation from the infoboxes13 within the Wikipedia pages belonging to different lan-
guage editions. Nowadays, it is a reference data set for a large amount of other projects
and studies within and outwith the Semantic Web research community. Other impor-
tant data sets are Yago [99] that boast a large ontology derived from Wikipedia and
Wordnet. Geonames [108] focuses on worldwide geographical information such as
latitude, longitude, elevation, population, administrative subdivision and postal codes.

10 http://lod-cloud.net/
11 http://stats.lod2.eu/
12Wikipedia is a free online encyclopedia that, by default, allows its users to edit any article it publishes. It is the largest and

most popular general reference work on the Web and is ranked among the ten most popular web sites.
13 Wikipedia infoxes are fixed-format tables designed to be added to the top right-hand corner of Wikipedia articles to consis-

tently present a summary of some unifying aspect that the articles share and sometimes to improve navigation to other interrelated
articles (https://en.wikipedia.org/wiki/Help:Infobox).

11
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Freebase [17] was a collaborative knowledge base of structured data released also as
Linked Data in 2008. Then, in 2010 it was acquired by Google who used it to built
its Knowledge Graph14 and then closed it in 2014. Fortunately, Google decided to of-
fer [80] the content of Freebase to the Wikidata community that integrated the data into
Wikidata [107]. Wikidata is an on-line collaborative data source where user generated
content, contrary to Wikipedia, is structurally inserted by users.

2.3.1 RDF

RDF is a framework for representing information on the Web [58]. It is built upon
the graph-based data model that defines statements about web resources in the form of
triples. A triple is a tuple composed by a subject, a predicate and an object.

• The subject could be an URI reference or a blank node. A blank node is a resource
having no URI or literal, it has no name because it has no identity, it is blank. In
some cases, it is useful to express statements in which a piece of information is
missing;

• The predicate could be only a URI reference;

• The object could be an URI reference, a blank node or a literal. Literals are used
to express values such as strings, numbers, dates and so on15.

URI references identify individuals such as a person, an organization, an animal, an
event, and so on. They are also known as instances or resources but their main purpose
is to univocally identify an individual within the data set it belongs and also in the
whole Semantic Web.

Sometimes the terms datatype property and object property are used for referring
triples. These terms are used to describe what kind of value the predicate of a triple
should have. More precisely, datatype properties relate individuals to literal data while
object properties relate individuals to other individuals.

For instance, a triple having the predicate hasName would typically be a datatype
property, since a name is a string, but hasBrother would be an object property, since a
brother would be another individual.

In the following we list some basic examples of RDF triples in order to better clarify
their components:

1. A triple is a tuple composed by a subject, a predicate and an object that can be
written as follows:
<subject> <predicate> <object>

2. The statement “A guy named Gioele knows a girl named Ginevra and a guy named
Carlo" can be written as the RDF triples:
<http://ex/Gioele> <http://ex/knows> <http://ex/Ginevra>
<http://ex/Gioele> <http://ex/knows> <http://ex/Carlo>
The subject, the predicate and the object are all URI references.

14 https://en.wikipedia.org/wiki/Knowledge_Graph and
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html

15 The complete list of datatypes available can be consulted at https://www.w3.org/TR/rdf11-concepts/
#section-Datatypes
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3. “Gioele is 9 years old".
<http://ex/Gioele> <http://ex/age> 9
The object is a literal having an integer datatype.

4. “Ginevra was born on the 21st April of 2012".
<http://ex/Ginevra> <http://ex/birth> "21/04/2012"
The object is a literal having a Time datatype.

5. “Someone greets Carlo".
[] <http://ex/greets> <http://ex/Carlo>
The subject is a blank node that can be used for expressing the fact that someone,
that we do not know and have no information about, greets Carlo.

6. “Carlo eats something".
<http://ex/Carlo> <http://ex/eats> []
The object is a blank node for expressing that Carlo eats something but we do not
know exactly what.

A collection of triples composes what is called an RDF graph and one basic exam-
ple, composed of the triples listed above, is depicted in Figure 2.7.

Figure 2.7: The diagram shows the RDF graph composed by the RDF triples listed in the examples
above. Blue nodes represent the subjects and objects that are URI references, small gray nodes are
literal objects while gray edges describe predicates.

2.3.2 Vocabularies

As described above, RDF provides a triple-based model for representing resources.
However, it does not provide any specific terms for modelling resources but it only pro-
vides a generic framework. In order to specify which is the class of a resource or how
two resources are connected to each other, we need to use taxonomies, vocabularies
and ontologies [45]. Some of them are the Simple Knowledge Organization System
(SKOS) [9], the RDF Vocabulary Description Language (RDFS) [19] and the Web On-
tology Language (OWL) [33]. SKOS can be used for defining conceptual hierarchies
while RDFS and OWL for describing the classes and properties of a set of resources.

13
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Such technologies can be used in order to model new vocabularies. However, vocab-
ulary reuse is a best practise. Hence, if a suitable term has been already defined in an
existing vocabulary it should be reused instead of “reinventing the wheel" by defining
a new equivalent term. Some of the most used and well-known vocabularies are:

• The Dublin Core Metadata Initiative (DCMI)16: it is a set of vocabulary terms that
can be used to describe web resources such as documents, web pages, images as
well as physical resources such as books, CDs and artworks;

• Schema.org17: it is a cross-domain vocabulary for structured data on the Web
sponsored by Google, Microsoft, Yahoo and Yandex. It is widely used and em-
ployed by several applications from Google, Microsoft, Pinterest and Yandex;

• The Friend-of-a-Friend (FOAF)18: it is a schema for mainly describing people,
organizations, and their own social network;

• The DBpedia Ontology19: is a cross-domain ontology manually created from the
Wikipedia infoboxes and periodically mantained and updated20;

• The Bibliographic Ontology (BIBO)21: it is an ontology providing concepts and
properties for describing citations and bibliographic references such as quotes,
books and articles.

Due to the large amount of vocabularies, we report only the widely known and used
ones. A wide set of vocabularies and ontologies can be found on the on-line Linked
Open Vocabularies service22.

2.3.3 Storing and querying

In the above sections, we described how information can be represented using RDF
(i.e., triples) and which are the instruments needed to model data and express semantics
(i.e., vocabularies). However, so far we did not mention any process about storing
and querying data. The key questions are now: “how can we store data?" and once
stored, “how can we query them?". The brief answers are respectively Triple stores and
SPARQL, two fundamental pieces among the Semantic Web technologies illustrated in
the following.

Triple stores are databases specifically designed for storing and retrieving triples
through query languages such as SPARQL [82], RQL [54] and TRIPLE [92]. There
exist several implementations of triple store that can be classified by their features:
Native, RDBMS-backed and NoSQL triple stores [89]. Some of the well-known triple
stores are Virtuoso23, AllegroGraph24, Jena TDB25, RDF4J26, and Stardog27. Other

16 http://dublincore.org/documents/dcmi-terms/
17 https://schema.org/
18 http://xmlns.com/foaf/spec/
19 http://mappings.dbpedia.org/server/ontology/classes/ and http://wiki.dbpedia.org/

services-resources/ontology
20 http://bl.ocks.org/fabiovalse/0dfe7280086553c4a233
21 http://bibliontology.com/
22 http://lov.okfn.org/dataset/lov/
23 http://virtuoso.openlinksw.com/
24 http://franz.com/agraph/allegrograph/
25 http://jena.apache.org/documentation/tdb/index.html
26 http://rdf4j.org/
27 http://stardog.com/
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references can be found on the W3C28.
Most of triple stores can be queried using SPARQL29 as query language for in-

terrogating RDF data. SPARQL has a similar syntax to SQL and it provides several
operators such as OPTIONAL30, NOT EXISTS and EXIST31 and Property Paths32 for
performing complex queries.

28 https://www.w3.org/wiki/LargeTripleStores
29 https://www.w3.org/TR/sparql11-query/
30 https://www.w3.org/TR/sparql11-query/#optionals
31 https://www.w3.org/TR/sparql11-query/#func-filter-exists
32 https://www.w3.org/TR/sparql11-property-paths/
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CHAPTER3
State of the art

DUE to the multi-field nature of the thesis, this chapter presents two different
states of the art. The first one, covered in Section 3.1, is related to the existing
applications and tools currently available for the visualization of Linked Data.

The second one, covered in Section 3.2, is about the current research studies that make
use of spatialization approaches with particular interest on the ones based on space-
filling curves.

3.1 Linked Data visualization tools

Several surveys [30, 55, 68, 81] have been already published in order to evaluate which
are the most efficient approaches and applications for visualizing Semantic Web data
such as Linked Data or ontologies. The large amount of visualization studies developed
within the Semantic Web research community can be explained by:

• the strong need for new tools for exploring these resources with effective and
meaningful approaches. Typically, users approaching, for the first time, a Linked
Data set find difficulties in understanding how the ontology is structured, which
are the types of resources used and which are the most important ones;

• the peculiar characteristic of the visualization design process of answering to spe-
cific user’s request with well-designed tasks. It is not trivial to create an approach
that answers all the questions users are interested in. Sometimes it is more effec-
tive to construct distinct tools solving different problems.

The most complete and exhaustive survey by Dadzie et al. [30] presents a deep anal-
ysis of the to date available approaches for visualizing Linked Data, identifies their lim-
itations, describes the visualization challenges which must be overcome and proposes

16
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some design guidelines and requirements which must be fulfilled in the design and
development of such applications. In particular, together with the survey by Peña [81]
and the Linked Open Data Visualization Model [22,23], it indicates the Visual Informa-
tion Seeking Mantra of Ben Shneiderman [91] as a fundamental visual design frame-
work for building information visualization applications. Shneiderman’s Mantra states
“Overview first, zoom and filter, then details on-demand" suggesting that the overview
should always come first in a visualization, since it provides the general context of the
data involved, and only at a later time users should be able to load more content and
finally focus their attention on details. This guideline can be seen as the backbone
of the approach presented in this thesis and described in detail in Chapter 5. For this
reason, the Shneiderman Mantra has been used as a criterion for examining the works
considered in the following analysis. The most significant techniques and applications,
designed for solving the problem of exploring Linked Data, have been firstly analysed
and then grouped in different classes according to their main features:

• Graph-based (Gb) comprises those works that are strongly depending on the node-
link diagram visual representation;

• Resource-oriented (Ro) encompasses those works that are mainly based on the
presentation of data related to single resources;

• Query-based (Qb) embraces those works that are mostly focused on the process
of querying data set in a more intuitive way than the SPARQL querying language;

• Other approaches (Oa) characterized by particular features not classifiable with
the previous categories.

3.1.1 Graph-based

In literature, a technique often employed for representing trees and networks, such
as the ones characterizing the content and structure of Linked Data, is the node-link
diagram where nodes are drawn as visual objects (e.g., they could be a shape such as
a circle or a square, or an image or icon) and the links connecting them are drawn as
directed or undirected lines [48]. Even if this visual idiom seems to be the most natural
and well-suited representation for graph structures such as RDF graphs, it is not always
the best one. In fact, as stated by Tamara Muzner in [74] node-links diagrams have
the major weakness of scalability. They remain easily readable only for small graphs
(i.e., dozens of nodes) and quickly degenerate into hairballs composed by hundreds
of nodes. Moreover, they are suitable especially for those user tasks involving the
network topology: find all possible paths from one node to another, find the shortest
path between two nodes and finding all the adjacent nodes one hop away from a target
node.

RelFinder [46] is a visualization tool specifically designed and developed for the
task of finding relationships between two different resources in an RDF graph. It dis-
plays the result of a certain query, composed by the two target resources the user is
interested in, as a node-link diagram where resources are nodes connected by links
labeled and directed according to the RDF predicate they represent. Since the paths
between the target resources could be composed by more then one hop with several
intermediate nodes, interactive dragging allows to create a more readable layout with
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no overlapping nodes. This visualization tool results to be useful for finding which are
the possible paths connecting two resources, however it presents the intrinsic scalability
problem arising in node-link diagrams. Due to its specific purpose, the tool does not
show the overview of an entire data set but only portions of it.

Aemoo [75] is another tool in which the employed graph visualization results to be
effective for the specific task for which it has been designed. Analogously to RelFinder,
it helps users in finding topologic information. In this case, the user can explore which
are the adjacent resources directly connected to a certain target resource previously
chosen. The target node is represented in the center of the diagram with a square
shape. Its adjacent nodes, depicted as circles, are circularly placed around the target
and connected to it through straight lines describing RDF predicates. In order to reduce
the amount of nodes and produce a more readable layout, adjacent nodes are aggregated
according to their class (e.g., rdf:type predicate). Even if this improvement streamlines
the resulting graphs reducing the visual clutter, it increases the memory load as the user
navigates beyond the target node. Moreover, the approaches hides to users which is the
total amount of resources connected to the target.

Aemoo is not the only tool that simplifies the structure and decreases the size of
graphs, in fact other applications such as LODSight [34, 35] try to reduce the intrinsic
scalability problem of node-link diagrams. The tool is specifically designed for discov-
ering data set issues through a manual exploration of their RDF graphs. Its approach
consists in firstly summarizing the graph and then applying a node-link visualization
technique. Moreover, the tool has a filtering feature that additionally limits the visual-
ization only to those entities connected to the selected ontologies or properties. Lod-
Sight partially provides an overview of the data set since it includes classes, properties
and data-types but it does not take into account instances.

Filtering techniques are often employed when dealing with large amounts of data,
for instance gFacet [47] combines faceted filtering with graph-based visualization. This
approach produces a node-link diagram where nodes are facets enclosing a set of re-
sources that are aggregated in a group because they share the same conceptual structure.
Besides connecting facet-nodes, links are themselves faceted since they allow to select
a predicate among the ones defined for a specific facet-node. By selecting a predicate
from a source node, its corresponding link becomes labeled and a new node is loaded
as destination. This tool provides a mechanism for filtering resources and looking up
their properties however it does provide a complete overview of the data set the user is
exploring.

LODLive [25] is a graph-based application for exploring Linked Data sets. Given
the URI of a resource, the tool starts the navigation of the data set the resource belongs.
The initial resource is displayed as a circle node surrounded by tiny circles representing
its object properties. By clicking on one of them, the tiny circle is exploded into a link
connecting the initial resource and a new circle node representing another resource.
The data properties of a resource can be loaded in an infobox by clicking on a particular
button placed inside every circle node. This particular exploration approach is exactly
the opposite of the Shneiderman Mantra since it results to be perfectly reversed. In
fact, Details on demand are firstly loaded by asking users to specify the URI of a
certain resource, zoom and filter are then performed by expanding object properties
and overview can be obtained once all the resources are loaded into the diagram. The
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approach results to be effective for those user tasks that need a focused view about a
certain resource. The main drawback of the tool is the difficulty of handling more than
dozens of nodes once loaded by users.

RDFVis1 [38] proposes an approach that computes in advance relevant informa-
tion for enabling experts users to query the SPARQL endpoint of a certain data source.
These information are all different classes of the resources of the data set, the kind of
relationship connecting resources having different classes and which are the predicates
used for modelling the resources of a certain class. In order to use the tool, it is neces-
sary to pre-compute a JSON file containing the information of all classes present in a
data set and the relationships between them. Then the tool can be activated and a node-
link diagram visualization will be presented. Ontological classes are depicted as circles
while the links connecting them as lines. Circles are depicted with a radius proportional
to the number of instances the corresponding class contains. Links are displayed with
varying width depending on the number of RDF triples defined with the predicate the
represent. Ordinary nodes and links are coloured in blue while the ones having a sub-
class or representing more than one link are coloured in red. The tool provides a good
overview of a data set in term of classes, instances and predicates. However, while it
is possible to access to the information related to classes and predicates, instances are
described only by their amounts.

Dadzie et al. [31] illustrates some challenges that must be addressed in presenting
Linked Data. The most interesting one, regarding the exploration starting point, ques-
tions the appropriateness, of most RDF browsers, of require users start the exploration
process from a specific URI. Our opinion, compliant with Shneiderman’s, is that the
focus of a specific resource, identified by a URI, should be provided only on demand
at the end of the exploration process that should start with an overview. Moreover,
users may not have the URI of the resource they are interested in. Hence, the overview
supports users by providing them information about content such as the URI to start
with. Other challenges concern the information overload arising when properties and
relations of a resource are presented to user and the effective readability of complex
data such as RDF. As a result of this analysis, the authors propose a template-based
approach composed by different views like a node-link diagram.

The choice of representing RDF graphs with node-link diagrams motivated by the
fact that they are graphs have been strongly criticized and described as “the pathetic
fallacy of RDF" [86]. Moreover, it is well-known in the field of Information Visual-
ization that this particular visualization idiom has the inherent and major drawback of
not being scalable over more than few nodes. Hence, since RDF graphs typically range
from thousands to millions of resources, we think that the best way for adopting this
technique should be only for specific and properly defined tasks that give rise to a lim-
ited amount of nodes such as the ones addressed by RelFinder or Aemoo. Moreover,
filtering techniques, nodes aggregation or a priori summarization could be additional
methods for improving the resulting visualization and making it more readable and
easy to understand.

1 http://jreutter.sitios.ing.uc.cl/VisualRDF.html
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Chapter 3. State of the art

3.1.2 Resource-oriented

Another characteristic that is recurrent in the applications presenting Linked Data is
the focus on single resources. This kind of application is quite common within the
on-line portals (e.g., DBpedia, Wikidata, GeoNames) where Linked Data are published
and resources consulted by visiting their URI. These web applications mainly provide a
view of a certain resource typically organized as a list in which RDF triples are reported.
By consulting the triples of a resource, it is possible to navigate its data set by following
the hypertext links of other resources.

This kind of application has been one of the first implemented after 2006 when
Tim Berneers-Lee coined the term Linked Data in his Design Issue note [11]. Some
examples are Tabulator [12], Disco [15], the OpenLink data browser [77] and Mar-
bles [10].

More recent works have been performed in order to navigate resources and get data
presented in a more user-friendly way. LD viewer [65, 66] is a framework for present-
ing the RDF data of the resources in a Linked Data set through an interface equipped
by different features such as pretty boxes. These user-oriented and easy to use boxes
display the most important properties of the viewed resource such as a picture, the ti-
tle, the classes, a short description and the links to other resources. Furthermore, LD
Viewer provides a search bar for looking up for resources, language filtering for choos-
ing a preferred display language, triple filter for filtering triples using both properties
and values, a shortcut box, live previews, maps for showing the geographic locations
and triple actions for using external services (e.g., RelFinder, LodLive and the Open-
Link Faceted Browser). LodView [24], provides similar functionality to the ones with
which LD viewer is equipped.

In conclusion, even if these solutions results to be very useful for the task of consult-
ing resource details, they have the significant drawback of being too focused on details
without providing any kind of zoom and filter, and overview feature.

3.1.3 Query-based

Some applications dealing with Linked Data are strongly oriented to easing the process
of querying data sets without the need of learning a Semantic Web query language such
as SPARQL. This purpose is driven by the complexity of query languages and by the
need of enabling non expert users in consulting information within Linked Data sets.
QueryVOWL [42] proposes a visual querying system that defines a mapping between
SPARQL and some graphical elements such as circles and lines already defined in the
Visual Notation for OWL Ontologies (VOWL) [76]. The purpose of the tool is to pro-
vide a simple way, relying on recognition, for intuitively and effectively performing
queries with visual objects and without handling complex SPARQL operators. By in-
teracting with graphical elements, users can firstly add the resources they are interested
in, and then bind them with relations. The resulting node-link diagram is automatically
translated to a SPARQL query that is executed over a specific SPARQL endpoint. Even
if the tool have the great advantage of letting users query a data set without know-
ing SPARQL, the graph-based approach limits the possibility of performing complex
queries that would involve the use of particular SPARQL operators.

Other tools such as Linked Data Query Wizard [49, 50] prefer to present Linked
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3.1. Linked Data visualization tools

Data avoiding node-link diagrams using instead a tabular interface. Once a text search
has been performed, a tabular view containing the resulting resources is provided. The
properties of the resources can be loaded as new columns and filters can be applied
in order to define the desired data set. Then, data can be visualized and consulted by
choosing from statistical diagrams such as bar, pie and line chart, and more complex
ones like parallel coordinates, stream graphs and mindmaps.

As QueryVOWL does, also Gruff [1] provides a graphical query view for creating
SPARQL queries as diagrams of nodes and links. Moreover, Gruff allows to find ar-
bitrary objects that are not easy to locate with popup menus for gradually honing the
research.

VisiNav [43] is a resource-focused tool based on facets for constructing queries.
Different operations are allowed: searching for resources of interest with a textual
search, focusing on a resource and get its properties, getting information about other
resources by following the URI specified by object properties, and manipulating result
set by setting a facet (i.e., a combination of a property and a literal value or an object).
Properties about resources can be visualized with lists, table views, timelines and maps.

Query-based solutions provide efficient ways for retrieving subsets of information
contained in data sets and getting the details about resources. However, using these
kind of tools makes not so effective to consult data overview.

3.1.4 Other approaches

The categories used in the analysis can not classify all the existing approaches the lit-
erature presents. In fact, other works specifically designed for solving particular tasks
have been developed. Spacetime [102, 105] mainly provides a solution for visualizing
data having both a spatial and temporal property. Once the user has selected a DBpe-
dia class, a time range and a location the application returns the corresponding results
displaying them both on a map and a timeline. The application provides also optional
features such as time sliding animation and heatmaps. Cubeviz [36, 69] is a platform
for visualizing statistical data. It provides different kind of diagrams, such as bar charts,
line charts and radar charts, that can be configured by users in order to set the visual-
ization according to their needs. Payola [57] is a web application for managing RDF
graphs. It has a set of pre-installed plugins for visualizing data such as node-link di-
agrams, tabular views, treemap and maps. Moreover it allows to easily run analysis
on SPARQL endpoints without the need of deeply knowing the SPARQL language.
Balloon synopsis [85] is a node-centric RDF viewer available as a jQuery-plugin for
the visualization of the RDF triples of the resources embedded within Web pages. By
clicking on resources, an overlay appears on the Web page and RDF data are displayed
using a tile layout containing also maps and simple charts. The Dashboard-approach
proposed by Mazumdar et al. [71] consists of a panel in which several customizable
visualizations, such as word cloud, map, pie chart, list, timeline, can be added in order
to visualize data with different methods.

21



i
i

“output” — 2017/1/10 — 10:04 — page 22 — #34 i
i

i
i

i
i

Chapter 3. State of the art

Class Overview Zoom &
Filter

Details on
demand

RelFinder Gb x
Aemoo Gb x x
LodSight Gb x
gFacet Gb x x
LODLive Gb x x
RDFVis Gb x
LD viewer Ro x
LodView Ro x
Tabulator Ro x
OpenLink
Data Browser Ro x

Marbles Ro x
QueryVOWL Qb x
LD Query Wizard Qb x
Gruff Qb x
VisiNav Qb x
Spacetime Oa x x
Cubevix Oa x x
Payola Oa x
Balloon synopsis Oa x

Table 3.1: This table summarizes to what extent each of the applications analyzed follows the Shnei-
derman Mantra. Each entry of the table is labeled with the class it belongs: Graph-based (Gb),
Resource-oriented (Ro), Query-based (Qb) and Other approaches (Oa). None of them provide to-
gether the three characteristic of the guideline. Only one provide an overview. Some of them provide
the zoom & filter feature. Most of them provide details on demand.

3.2 Spatialization approaches

The Spatialization process is certainly the most important step in the pipeline of our
visualization approach. Formally, it is the transformation of high-dimensional data into
lower-dimensional, geometric representations on the basis of computational methods
and spatial metaphors [95]. More generally, it can be defined as a process referring to
the use of spatial metaphors to make sense of abstract concepts [96].

The spatial metaphor is the key-strength of spatialization approaches and in the
recent years, it has been applied to represent non-geographic data for knowledge dis-
covery within large and complex databases [96]. Spatial metaphors enable people that
have previously learned how to read geographic maps to apply their own skills and gain
new knowledge from abstract data having no inherently spatial attributes. This means,
for instance, that databases about researchers, academic articles and citations could be
visualized as maps. Other examples could be biological or medical data, stock mar-
ket transactions or even Internet data flows. Possibly, every set of data, if accordingly
prepared with pre-processing methods, could be visually represented as a cartographic
map even if their attributes have no geographic meaning. In this section, it is illustrated
that it is not required to have geographic data in order to properly place them on a
two-dimensional space and in this manner create a map.

So, how is it possible to pre-process data in order to subsequently “spatialize" them?
The literature proposes two main approaches for achieving this purpose: dimensional-

22



i
i

“output” — 2017/1/10 — 10:04 — page 23 — #35 i
i

i
i

i
i

3.2. Spatialization approaches

ity reduction and spatial layout. Among the major techniques following the former ap-
proach it is certainly important to mention the Multi-dimensional scaling [63] (MDS)
and the Self-organizing map [61] (SOM). They both aim to create a mapping from high-
dimensional data to low-dimensional data but while MDS needs only the distances be-
tween objects, SOM, that is an unsupervised and competitive neural network2, requires
as input their coordinates. On the contrary, the approach presented in this thesis is
not based on dimensionality reduction but it adopts a treemap spatial layout approach,
based on the use of a specific type of fractal curves called space-filling curves.

Space-filling curves are also known as plane-filling curves and they have the prop-
erty of passing through each point of a spatial region. The concept was first introduced
by Peano [79] when he discovered in 1890 the Peano curve. More detailed information
about space-filling curves can be found in section 2.2.2.

Now, it is important to understand how space-filling curves can be used in order
to provide a spatial displacement to the elements of a data set organized as a hierar-
chy. Basically, the fractal path a space-filling curve defines on a surface is used for
arranging the set of elements. Each element is placed on a surface along the curve in
a specific way that keeps its siblings in the hierarchy close to it. This process of spa-
tialization, will be deeply described in Chapter 5. The result of this operation is a map-
like visualization resembling a traditional geographic map that is instead composed
by non-geographic abstract data. This particular feature has been called cartographic
metaphor and consists in a powerful method for representing hierarchical abstract data
in an intuitive way. In fact, the data are visually depicted as nested regions representing
the hierarchical level of the hierarchy they compose. This metaphor eases the process
of understanding information since it exploits the cognitive skills [37, 93] already de-
veloped by humans in reading traditional maps. The current approaches adopting the
cartographic metaphors are briefly illustrated in the following, first the ones employing
space-filling curves are presented.

In Auber et al. [6] a method called GosperMap for representing hierarchical struc-
tures is presented. The approach relies on the cartographic map metaphor and proposes
an algorithm for producing treemap composed by irregularly shaped and nested re-
gions. It appeals to the cognitive skills characterizing anyone who has ever learned to
read a map. These skills are for instance the recognition of region containment and
the pattern recognition of region areas. In order to construct a visualization supporting
these skills, the method uses the Gosper space-filling curve for producing maps where
regions have an area proportional to the sum of the area of their children. Beyond pre-
senting the algorithm, the article proposes a method for separating region boundaries
and better display nested regions so that hierarchies result to be more clear and visible.
Furthermore, to fill the need of visualizing the evolution of hierarchies, it addresses the
problem of the layout stability. Finally, an algorithm for placing labels within concave
shapes is illustrated.

Vallet et al. [101] proposes JASPER, a particular layout for supporting users in the
task of making sense of state changes occurring on nodes of large graphs. JASPER

2An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous
systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information
processing system. It is composed of a large number of highly interconnected processing elements (neurones) working in unison
to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern
recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic
connections that exist between the neurones. This is true of ANNs as well. [98]
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has been designed to compute a compact layout representing an overview of a graph.
Differently from common graph layouts where both nodes and links are displayed,
JASPER shows only the former hiding the latter. Moreover, it places nodes so that the
adjacent ones (i.e. connected by an edge) remain as close as possible to each other, thus
giving a hint of an existing connection between them. This solution firstly computes
an initial and coarse layout of the overall graph by applying a clustering algorithm for
reducing the number of nodes to be displayed and grouping them together. Then, the
pixel-oriented3 visualization is computed by ordering the nodes and placing them on
the Morton space-filling curve (also known as Z-order curve). The main purpose of
the resulting visualization is to assist users in keeping track propagation phenomena,
basic situations arising especially in social networks similar to infections. Since the
visualization is updated in real-time, these phenomenon can be visually tracked by
viewers as color changes.

Wong et al. [110] presents a visualization technique, called GreenCurve, for in-
teractively analyzing graphs and obtain their overview with maps. The first step for
generating a GreenCurve is an ordering process that assign to each node a sequential
number. Then graph nodes are folded into a space-filling curve. The Peano and the
Hilbert curve have been chosen for their high degree of spatial coherence4.

The work of Abrate [3] present a design concept called Data Cartography that
mainly states that the cartographic discipline can be adapted to specific cases presenting
abstract information. The idea is not only about positioning data on two-dimensional
surfaces or keeping close semantically similar data. In fact, these aspects have been
already presented in earlier works such as the ones illustrated above. The intent of the
study is to communicate a large amount of complex information by embracing all the
features characterizing Cartography such as visual representation methods for placing
labels, drawing boundaries, using specific symbols, colors and textures. By combining
these features with techniques such as geometric and semantic zoom, technologies such
as topojson5, geojson6, and geospatial databases7, the work presents a way for visually
representing a data set in its entirety. Moreover, the study presents some applications of
the approach using hierarchical structures and adopting a spatialization method based
on different space-filling curves such as the Hilbert and the Gosper one.

Space-filling curves are not the only existing approach adopted for creating map-like
visualizations. Biuk-Aghai et al. [14] introduces a method based on liquid-modelling.
In order to build the final map-like layout, the method firstly produces a preliminary
layout using the force-directed layout and overlap removal algorithms. The nodes po-
sition calculated in this step are then used as the input of the liquid modelling. The
liquid modelling uses immiscible liquids in order to reach a stable state where nodes
have their final position. The modelling starts with all liquids having equal parameters
and stops when they reach a minimum threshold. Last step adds colours, borders and
labels to the map.

In a previous work Biuk-Aghai and Yang [112] propose a method for visualizing
hierarchical data in a geographic map-like form. After a preprocessing phase, for trans-

3Pixel-oriented visualization is a technique allowing to display large quantity of data in a minimal space. [56]
4The coherence level of a fractal curve is the amount in which neighboring pixels are at sequential positions on the curve.
5 https://en.wikipedia.org/wiki/GeoJSON#TopoJSON
6 https://en.wikipedia.org/wiki/GeoJSON
7 https://en.wikipedia.org/wiki/Spatial_database
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forming input data into a tree structure, has been computed the enhanced hexagonal-
tiling algorithm starts. It is a recursive procedure that assign tiles for each node in the
tree starting from the leaves till the root. Since the algorithm sometimes reaches situ-
ations in which no space is left for allocating an entity, a backtracking mechanism is
used in order to solve the problem and find another position to accomodate the entity.

Skupin [94] presents a spatialization technique for creating map-like visualizations
of knowledge domains. The main goal is to produces a multilevel visualization of
non-geographical data in which both major and finer domains are displayed. The tech-
nique relies on cartographic principles and emulates traditional geographic depictions.
The study present as example a geographic knowledge domain constructed analyzing
the abstracts submitted to the annual meeting of the Association of American Geog-
raphers. The visualization methodology is mainly based on two well-known methods,
Self-organizing map8 (SOM) [61] for generating the two-dimensional coordinates of
abstract data and Hierarchical clustering for grouping them in a nested structure en-
abling multilevel representations. The hierarchical clustering has been chosen as clus-
tering method for the advantages it offers graphically, conceptually, and computation-
ally.

Mashima et al. [70] improves the GMap method [39] with an algorithm variation
handling dynamic data. It exploits the geographic-map metaphor for visualizing non-
geographic relational data. Two use cases are presented, music trends of the Internet
radio station last.fm and television viewing trends of an Internet Protocol television
(IPTV) service. The GMap input is a graph of nodes and links. Firstly, the vertices are
grouped using a modularity-based clustering algorithm. Then, the graph is embedded
in a two-dimensional space using multi-dimensional scaling. The final map is then
created using a Voronoi diagram of the vertices determined by the clustering and the
embedding previously computed.

Gronemann et al. [41] proposes a method for drawing clustered graphs as topo-
graphic maps. The technique initially applies a slight variation of the Girvan and New-
man clustering algorithm [40] based on edge betweenness. The algorithm calculates
the betweenness for all edges in the graphs and then successively removes the one with
the highest score until the graph becomes disconnected. The procedure is then repeated
within each connected component in order to hierarchically clustering the graph. Fi-
nally the placement of the nodes is computed using the fat polygon partitioning [32]. It
is a hierarchical partition scheme which differently from the typical partitions, such as
the one used in treemap visualizations, uses convex polygons rather than just rectangles.

Another interesting study presented by Chalmers, sharing the intention of spatializ-
ing abstract data, has been carried out in the context of Information Retrieval. In fact,
the traditional interaction techniques of this discipline offer access of information by
means of isolated queries and word searches. Chalmers proposes Bead [27, 28], an ap-
proach displaying a document corpus in the form of a map or landscape constructed ex-
ploiting the similarity and dissimilarity of the documents composing the corpus. Bead
represents documents as particles in a 3D space. By using physically-based modelling
techniques the relationships between the documents are represented by their relative
spatial positions. In fact, inter-particle forces tend to keep similar documents close to
each other and dissimilar ones to move apart. The result of this physical process pro-

8Self-organizing map is an artificial neural network trained using unsupervised learning for performing dimensional reduction.
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Space-filling
curve Tiling Other approches

Auber [6] Gosper Hex /
Vallet [101] Z-order / Pixel oriented layout

Wong [110] Peano and
Hilbert Square /

Abrate [3] Gosper, Peano
and Hilbert

Hex and
Square /

Biuk [14] / /
Force-directed layout
and liquid modelling

Yang [112] / Hex Backtracking

Skupin [94] / /
Self organizing map and
Hierarchical clustering

Mashima [70] / /
Multi dimensional scaling,

Modularity-based clustering,
and GMap

Gronemann [41] / /
Edge betweenness clustering
and Fat polygon partitioning

Table 3.2: A summary of the spatialization approaches existing in the literature. Some of them adopt
space-filling curves for the generation of the maps while others utilize other methods. The type of
tiling used is squared or hexagonal.

duces a 3D space relying on the metaphor of a landscape that allow users to interpret
word-based information using the everyday phenomena of spatial position and colour.
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CHAPTER4
Preliminary study

THE preliminary study illustrated in this chapter, reports the initial analysis, per-
formed on the existing visualization techniques, for devising the final approach
described later in Chapter 5. The design process firstly examined the current

approaches, available in the field of Information Visualization, for representing two
specific kind of data set types: networks and trees. DBpedia has been selected as test
data set in order to apply the different techniques found, analyze their properties and
evaluate them. Using the same set of data over different kind of visualizations has been
a useful approach for understanding which were the advantages and drawbacks of every
technique.

In the following, we present all the steps progressively conducted in the analysis
that enables the conception of our final approach. All the visualizations contained in
the collection below have been implemented using the Data-Driven Documents (D3)
Javascript library1. Furthermore, their code is openly published on to the Gist2 service
of the GitHub3 repository. Due to the interactive essence of the visualizations proposed
in the following, and for a better understanding of them, URL addresses for consulting
their on-line version are made available within their relative image caption.

As it will be discussed later in more details, in most of the cases, the structure of
Linked Data sets can be abstracted as a compound network that is mainly composed by
a graph and a tree (more generically a forest). These two components are usually very
unbalanced in term of size, in fact graphs typically result to be significantly bigger than
their relative trees. For instance, the graph and the tree of the DBpedia compound net-

1http://d3js.org
2http://gist.github.com
3http://github.com
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Chapter 4. Preliminary study

work have respectively 4 million and 7 hundreds thousands resources, and 721 classes4.
For this reason along with the fact that trees describe the ontological and general orga-
nization of a data set, we started visualizing only this specific structural and hierarchical
component.

Figure 4.1: A small portion of a dendogram representing the ontology of DBpedia. Nodes are classes
represented as blue circles while the links denoting the ontological relationships between them are
represented as gray curved edges. On the left, the outgoing links starting from the root node give
a glimpse of the large amount of space this layout needs in order to be entirely depicted. The on-
line version of the visualization can be consulted at http://bl.ocks.org/fabiovalse/
c1f4cd4647dff0a412dd.

The analysis starts with the use of the D3 cluster layout5 allowing the generation
of dendograms: node-link diagrams that place the leaf nodes of their tree at the same
depth. The resulting representation, shown in Figure 4.1, displays ontological classes
as labeled nodes and rdfs:subClassOf relations as gray curved edges. The diagram
presents some restrictions: a scalability problem does not allow to entirely see the
overview of the tree due to its large size. Furthermore, the layout produces overlapping
edges that make worse their readability.

A simple improvement to the result given by the cluster layout can be achieved
using the D3 tree layout6. This particular layout implements the Reingold–Tilford al-
gorithm [83], a well-known algorithm used for creating efficient and tidy drawings, of
aesthetically pleasing trees, with the minimum use of drawing space. Moreover, by
introducing a collapsible node mechanism, implemented in the visualization shown in
Figure 4.2, it is possible to obtain an interesting interactive result. The initial status
of the diagram displays only the root of the tree and its direct children. The style of
the circles denotes whether a certain node has children or not; a filled circle indicates
the presence of a sub-tree that can be expanded by clicking on it. Even if collapsible
interactions make the tree more compact, and the visualization more clear, this solution

4The numbers have been calculated from the 2014 dump
5https://github.com/mbostock/d3/wiki/Cluster-Layout
6https://github.com/mbostock/d3/wiki/Tree-Layout
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contradicts the Shneiderman’s Mantra since the overview of the data set is not anymore
the first view presented to users.

Figure 4.2: The initial view of the collapsible tree representing the ontology of DBpedia. Nodes with
stroke only and no fill represent intermediate nodes and denote the presence of a sub-tree that can
be expanded on click while stroke nodes indicate the leaves of the tree. Clicking on intermediate
nodes opens their relative sub-trees. The interactive version of this visualization can be consulted at
http://bl.ocks.org/fabiovalse/d784198bdc1c76221393.

Since it is important to be compliant with the Mantra, it is better to omit the collapsi-
ble tree just described and try to improve the dendogram illustrated above in Figure 4.1
even if it presents come scalability problems. Two new features are added: the Rein-
gold–Tilford algorithm, already mentioned above, and a fixed ordering for the nodes of
the tree called canonical order. According to this particular ordering, the branches of
a tree are arranged by firstly preferring the ones with a higher depth. If two branches
present the same depth, it is choosen first the one having more children. The outcome
of this process, shown in Figure 4.3, is indeed characterized by a tidier layout. The
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canonical ordering strongly contribute in avoiding the links overlapping since it pre-
vents that no edge is coincidentally drawn over the others. Generally, the visualization
has a very clear layout but it still lacks on scalability since a very tall space is needed
in order to fully contain it.

The obtained diagram can be further enhanced with additional information. For
instance, as shown in Figure 4.4, the number of resources of every class can be encoded
by the radius of the node circles.

Figure 4.3: A portion of the diagram showing the ontology of DBpedia. This particular visualization has
been computed by applying the Reingold–Tilford algorithm and the canonical ordering. The layout
is very readable since nodes are clearly arranged without any overlaps among the edges connecting
them. The interactive version of this visualization can be consulted at http://bl.ocks.org/
fabiovalse/25879cec40c9d8b08e6d.

So far, only techniques for visualizing hierarchies has been presented. However, the
most common kind of representation, used for visualizing networks and also trees, is
the node-link diagram along with the force-directed placement. The force layout7 im-
plementation of D3 has been used in order to draw the graph and evaluate its properties.
This algorithm assigns repulsive charge forces to the nodes for keeping them separated
from each other. In addition, a pseudo-gravity force, keeps the nodes within the visible
area of the visualization avoiding the expulsion of disconnected components. Links are
not implemented with spring forces like in common force-layout algorithms, but geo-
metric constraints are adopted for keeping fixed the distance between link endpoints.
Figure 4.5 shows the application of this algorithm. Nodes represent ontological classes
(e.g., Person, Organisation, Event, Places, Species) while links encode, in their width,
the amount of connections (i.e., predicates of the RDF triples) between the instances
of the class they are connecting. The result is quite scarce since the diagram is almost
unreadable due to the disorder in the arrangement of the nodes and the links overlap-
ping. This diagram truly demonstrates the scalability problem affecting this kind of
diagram. Despite this restriction, several existing works employ this visual idiom for

7https://github.com/mbostock/d3/wiki/Force-Layout
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Figure 4.4: A portion of the diagram showing the ontology of DBpedia. This particular visualization
introduces an additional information to the previous one shown in Figure 4.3. In fact, the number
of resources is encoded, for each class, in the length of the radius of the circle representing it. The
web version of this visualization can be consulted at http://bl.ocks.org/fabiovalse/
1caa04f2c469c294e618.

representing graphs such as Linked Data sets. Instead, other infovis studies state that is
not suitable for such amount of data [74] and some Semantic Web works strongly dis-
approve it [86] by saying that the node-link diagram should not be used only because
Linked Data are structured as a graph.

The inadequacy of the node-link diagram drives our analysis to continue the study
of other hierarchy representations. Better nodes arrangement can be achieved using the
radial layout in which the root of the tree is placed in the center of the diagram while
each tree level is circularly disposed around it with a distance proportional to the its
depth. As shown in Figure 4.6, the radial layout significantly improves the displacement
of the nodes allowing to clearly understand the tree structure. This particular layout
gets better results in term of aspect ratio since it drastically reduce the space needed for
displaying the diagram in its entirety. However, it still remain quite disorganized due
to the large amount of links that confusingly connect the nodes.

A well-known optimization for the representation of trees, is the hierarchical edge
bundling [51], a technique, for reducing the visual clutter, that can be applied on top of
standard tree visualization methods. Figure 4.7 shows the application of the bundling to
the radial layout tree previously discussed. Edges are curved according to the hierarchi-
cal path starting from a node, rising to the root and going down to the destination node.
The bundling consistently reduces the visual disorder of the links improving the layout.
The result is quite interesting since it allows to get insights about the distribution of the
edges within the hierarchy. In fact, by looking at the bundles formed by a significant
overlapping of edges, it is possible to understand which are the most relevant flows
of connections between the classes of the ontology. For instance, at a first look, it is
very evident that there is an imbalance between the left and right part of the diagram.
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Chapter 4. Preliminary study

Figure 4.5: A small part of the node-link diagram showing the ontology of DBpedia. The graph is
very confusing since almost the whole space of the diagram is occupied by a large amount of links.
The width of the links encode the number of connection between each pair of nodes. An interac-
tive version of this visualization can be consulted at http://bl.ocks.org/fabiovalse/
c2e578ce545305ebb95a.

Figure 4.6: The radial layout used for drawing the nodes of the ontology of DBpedia. The layout
provides a more compact aspect ratio respect to the visualizations analyzed so far. The hierarchy
can be seen more easily but links still remain very disordered and difficult to be read. An inter-
active version of this visualization can be consulted at http://bl.ocks.org/fabiovalse/
02e0ee27f199416a8a0f.
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Figure 4.7: The hierarchical edge bundling extremely improves the visual clutter characterizing the
previous visualization. Furthermore, The bundles allow to get which are the most significant edge
flows within the hierarchy. An interactive version of this visualization can be consulted at http:
//bl.ocks.org/fabiovalse/218d1d2f36125c64a32b.

Moreover, the darker flows on the right side of the visualization mainly correspond to
the edges between the class Person and the class Place or Work.

Alternatively, another technique that can be used for arranging edges in a visual
pleasing way, is a novel method inspired by the Strahler number or Horton–Strahler
number used for measuring the branching complexity of a tree. Basically, this tech-
nique groups links together forming the so called pipes that are aggregation of edges.
Hence, all the edges passing through each pair of nodes are aggregated together form-
ing a single edge encoding their amount with its width. From figure 4.8, showing the
result produced by the technique, it is possible to see how the blue pipes summarize
all the edges existing between the nodes. The visualization results to be too greedy
since it does not consider the direction of the edges. The outcome, in Figure 4.9, has
been obtained by distinguishing outgoing from incoming links that are separately ag-
gregated and respectively represented with red and blue pipes. Moreover, the amount
of instances belonging to each class is encoded on the radius of its corresponding circle.

A valuable variant for the representation of hierarchies with a radial layout is the
sunburst technique also known as radial treemap. Differently from the previous visual-
izations, in which classes are drawn with circle nodes, this particular method represents
them as radial arcs. The root of the hierarchy is placed in the center while the leaves
are, the most external nodes of the diagram. Furthermore, edges are not represented
at all, since the specific placement of the radial arcs reveals their location within the
hierarchy. Then, the relationships between classes can be implicitly deducible from the
arcs placement. In fact, a hierarchical relationship can be easily identified by the arcs
connecting two nodes belonging respectively to two consecutive levels of the hierarchy.
In addition, the amount of instances, each class owns, can be inherently encoded by the
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Chapter 4. Preliminary study

Figure 4.8: A radial tree layout representing the ontology of DBpedia and adopting a method inspired by
the Strahler number. Edges are aggregated together forming the blue pipes connecting the nodes of
the hierarchy. An interactive version of this visualization can be consulted at http://bl.ocks.
org/fabiovalse/1b3d58804fe02c62679d.

Figure 4.9: Differently from the previous visualization, the direction of the edges are taken into account
for distinguishing which are the outgoing and incoming links connecting the nodes. Moreover, for
each class, its amount of instances is encoded on the radius of the circle representing it. An inter-
active version of this visualization can be consulted at http://bl.ocks.org/fabiovalse/
672670526e0a9b642719.
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Figure 4.10: The sunburst representing the ontology of DBpedia. This radial layout depicts nodes
as radial arcs. The root of the tree is in the center of the chart while the leaves are the most
outward arcs. Arcs encode the amount of children their sub-hierarchy contains. An interac-
tive version of this visualization can be consulted at http://bl.ocks.org/fabiovalse/
0dfe7280086553c4a233.

degree of the angle the arcs embody. The D3 Partition Layout8 has been used for pro-
ducing the diagrams shown in Figure 4.10 and 4.11. While the former encodes, in the
angle degree of the radial arc, the amount of children in the sub hierarchy of a certain
class, the latter represents the amount of instances belonging to a specific class.

8https://github.com/mbostock/d3/wiki/Partition-Layout
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Chapter 4. Preliminary study

Figure 4.11: Differently from the previous visualization, the arcs of the sunburst encode the amount of
instances their corresponding ontological class owns. An interactive version of this visualization can
be consulted at http://bl.ocks.org/fabiovalse/fa3be10877083f295204.
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CHAPTER5
Visualizing Linked Data sets as abstract maps

THIS chapter illustrates the main contribution of the thesis, consisting in an inter-
active approach for the visual representation of Linked Data sets. As already
shown in some previous works [103, 104], one of its main purpose is to provide

an overall visualization representing entire data sets. The main idea is to initially pro-
vide a generic overview of the data set and secondly permit to explore precise portions
of it for finally consulting its most specific details.

New visualization approaches are strongly needed for solving the comprehension
problems that Semantic Web experts address every time they approach a Linked Data
set. Especially for users having the need of performing queries, understanding how
Linked Data sets are structured in term of ontology and how their instances are related
to ontological classes are fundamental information.

In order to solve this problem, an approach founded on Cartography is presented.
Since this discipline studies how to produce maps, depiction defining the relationships
between objects in a space, we employ it for the visualization of abstract data instead
of geographic ones. Even if data have no geographic meaning, they can be properly
arranged on a two-dimensional surface in a specific way that resembles traditional
geographic maps. This cartographic metaphor has been already adopted in the liter-
ature producing a high level of efficacy in communicating complex non-geographic
data structure. The key strength of this technique is the reuse and exploitation of the
map reading skills humans have already learned. In fact, the process of consulting a
traditional map results to be equal to the one that can be performed on the resulting
visualization our approach generates.

The use of a map as visualization enables to represent instances accordingly orga-
nized by the hierarchical structure defined by the classes of the ontology. In the result-
ing representations, ontological classes are depicted as regions generated by the aggre-
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Chapter 5. Visualizing Linked Data sets as abstract maps

Figure 5.1: A sketch sample of the idea behind our approach. Instances are represented as tiles while
classes are given by sets of tiles.

Linked Data
set

Compound
Network

Spatialized
Data

Map

data
transformation

spatialization
and merging

viewport
filtering

Figure 5.2: The specific visualization pipeline especially devised for Linked Data sets that are gradually
transformed into a map-like visualizations through three different steps: data transformation, sorting,
spatialization and merging, and viewport filtering.

gation of their corresponding instances. Thus, ontological classes such as Thing, Person
or Animal are analogously represented as portions of space delimited by boundaries as
in the case of ordinary administrative divisions like Country, Region or Province. As
shown in Figure 5.1 Instances are the units of these particular maps since they are repre-
sented as tiles and placed on the space forming the regions corresponding to the classes.

In order to create such visualizations, a data set has to properly processed. For this
reason, a specification of the visualization pipeline described in Chapter 2 has been
instantiated for the case of Linked Data as shown in Figure 5.2.

A Linked Data set is the input data of the pipeline while the analytical abstraction of
choice is the so-called compound network specifically described below. The visualiza-
tion transformation step is composed by a spatialization and merging operation produc-
ing a set of spatialized data as visual abstraction. The spatialization process transforms
abstract data to geometric objects by producing their preliminary shapes and positions.
The subsequent merging procedure takes these geometric objects as input and merges
them into bigger one, thus establishing their final configuration. The last transforma-
tion of visual mapping is controlled by a viewport filtering process enabling users to
exclusively select the portion of data they are interested in.

In the rest of the chapter, all the steps for creating the visual representation, proposed
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5.1. Input data: Linked Data set

by our approach, will be specifically illustrated by following the progressive structure
of the pipeline.

5.1 Input data: Linked Data set

So far, the term Linked Data set has been only mentioned as the input of our approach
without explicitly defining what exactly means. This section, present Linked Data sets
in a more detailed manner by describing them in term of their structure, components
and content.

As discussed in the Chapter 2, a Linked Data set can be seen as a graph data structure
called RDF graph. It is simply a collection of RDF triples that is a list of elements in
the form of subject, predicate and object. The reason behind its name, is that the triples
compose a graph where individuals are the nodes and predicates define the relationships
linking them. For example, considering the triples:

John hasMother Lucy

John hasFather George

John hasDog Rocky

John hasCar JohnCar

it is possible to obtain a graph whose nodes will be John, Lucy, George, Rocky and
JohnCar connected by the links hasMother, hasFather, hasDog and hasCar.

An important distinction has to be made between the different kind of nodes com-
posing the graph. Ontological classes are called class nodes while their instances, that
are the individuals are called instance nodes. In particular, among the triples of a RDF
graph, there are some that define the class of the individuals. The following example
specifies the membership of the individuals to a class through a generic isA property. It
is possible to see three classes that are Person, Dog and Car.

John isA Person

Lucy isA Person

George isA Person

Rocky isA Dog

JohnCar isA Car

Every Linked Data set determines the overall number of nodes it owns. A common
aspect shared by these data sources is the strong imbalance between the class nodes and
the instance nodes. Even some of the most important Linked Data sets are characterized
by this lack of balance, as shown in Table 5.1.

Links differ for the kind of relationship they represent. In fact, it is possible to
identify three typologies respectively defining a connection between two instances,
two classes, and an instance and a class. For example, among the triples previously
mentioned, hasMother and hasFather are relationships between instances while the isA
predicate connects an instance to a class. Links connecting two classes could be the
ones relating Dog to Animal, Person to LivingThing and Vehicle to NonLivingThing
within a hypothetical ontology.
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Chapter 5. Visualizing Linked Data sets as abstract maps

Dataset Geonames DBpedia LinkedMDB Wordnet Lexvo
Class Nodes 7 721 51 5 5
Instance Nodes 8.3M 4.7M 694.400 647.215 128.945

Table 5.1: The amount of classes and instances of some well-known Linked Data sets compatible with
the data abstraction of our approach.

tree

network

Figure 5.3: An example of compound network constituted by a network (gray) and a tree (black). The
leaves of the tree are the nodes of the network. Black links define the hierarchical structure of the
tree. Gray links define the relationships between the nodes of the network.

5.2 Analytical abstraction: compound network

The analytical abstraction is the result of the data transformation step. In our case,
the Linked Data set input is converted into a compound network that can be generally
defined as a network with an associated tree (Figure 5.3).

More precisely, the leaves of the tree represent the nodes of the network, while
internal nodes provide a hierarchical structure for the leaf nodes that are connected
to each other by the links of the network [74]. This kind of abstraction have been
recently used also by other works [4, 52] in which approaches for the scalable drawing
of networks has been illustrated.

Considering the purpose of our approach which visualizes instance nodes according
to the structure described by class nodes, the abstraction defined by the compound
network results to be a suitable solution. In fact, most of the time, RDF graphs are
characterized by hierarchical ontologies organizing their classes and defining the base
structure for the instances. More precisely, given the different nodes characterizing an
RDF graph, it is well fitting with the abstraction to divide them in two different sets,
instance and class nodes, where the former represents the graph and the latter the tree.

Some of the main Linked Data sets, results to be characterized by the compound
network abstraction. For instance:

• DBpedia has a hierarchical cross-domain ontology whose classes organize a large
variety of different instances derived from Wikipedia. Instances are linked to-
gether forming a graph according to the same connections Wikipedia presents.

• Geonames is a geographic data set containing instances representing place names.
Its ontology is a hierarchy defining the divisions of administrative concepts such
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5.2. Analytical abstraction: compound network

as countries or regions.

• Several other cross-domain data sets can be abstracted as compound network if ac-
cordingly described by the emerging hierarchical ontology defined by schema.org.

Furthermore, not only Linked Data sets are organized in such a way. There are
many cases that can be found in the Computer Science field, outside the Semantic Web
research area, in which data sources present the same kind of organization, for instance:

• An academic publication network, structured as an institution hierarchically com-
posed by different headquarters, departments, institutes and research groups, with
the relationships between the publications of the researchers (i.e., citations of the
articles);

• A software system hierarchically organized by directories, sub-directories and the
files of the classes with the relationships defined by the dependency of a class
from another;

• A social network composed by people belonging to different groups in different
levels within a hierarchy, such as the organization structure of a company, with
the relationships like the social interactions between people or the task allocation
between colleagues;

• An outcome produced by the execution of Machine Learning algorithms such as
hierarchical clustering in which observations are related to each other.

Hierarchical ontologies can be abstracted as a data structure widely used in Com-
puter Science called tree. Generally speaking, a tree structure means a “branching"
relationship between nodes, much like that found in the trees of nature [59]. More
precisely, a tree can be recursively defined as a set of nodes, where one of them is the
root and the remaining ones are disjointly grouped in sets that are in turn a tree and
connected to the root. However,Linked Data sets are not always characterized by trees,
in some cases, such as for LinkedMDB, Lexvo and Wordnet-RDF, a slightly different
data structure, called forest, can be used as abstraction. There is a very little distinction
between a forest and a tree. In fact, a forest is a set of zero or more disjoint trees or
another way to phrase it is that a forest is the nodes of a tree excluding the root [59].

Let’s now consider a Linked Data set in term of a compound network. As depicted
in Figure 5.4, two main components, a graph and a forest, respectively colored in red
and blue, describe the compound network. There are two kinds of nodes:

• Class nodes compose the forest and represent the classes in the ontology;

• Instance nodes are the leaves of the trees and represent the resources (i.e., distinct
URIs found as subjects or objects of RDF triples).

These nodes are connected by three kind of links:

• Vocabulary links are derived from the ontology of the data set and correspond to
the rdfs:subClassOf predicate;

• Relationship links define the connections between instance nodes;
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Chapter 5. Visualizing Linked Data sets as abstract maps

VL

TL

RL

class
nodes

instance
nodes

Figure 5.4: A graph (red) and an associated forest (blue) define the extended compound network. In our
case, it is composed by class nodes, instance nodes, vocabulary links (VLs), relationship links (RLs)
and type links (TLs).

• Type links denote the membership of an instance to a certain class and correspond
to rdf:type predicate.

In order to better clarify what exactly the compound network abstraction is, we give
a very simple example shown in Figure 5.5. First, let’s consider the forest. It represents
the ontology of the data set. It is composed by two small trees, the first specifies persons
with male and female genders, while the second defines places with two administrative
divisions, regions and countries. The ontological entries in both trees are connected
with each other through vocabulary links. For instance, the class Male and Female
are linked to the class Person with the rdfs:subClassOf predicate. Let’s now consider
the resources or instances. Overall, they are five, two persons, Fabio and Alessandra
that are respectively instances of the class Male and Female, three places, Lombardy
and Tuscany instances of the class Region and one instance of Country that is Italy.
By examining the relational links in the graph it is possible to understand which is the
relationship between resources, for example, both Lombardy and Tuscany have Italy
as country while both Fabio and Alessandra are connected to Tuscany since it is the
where Fabio works and where Alessandra was born. It should be clear now which
is the distinction between the graph and the forest. While the former represents the
resources in an RDF data set and how they are connected, the latter classifies them with
hierarchical structures defining the context of the data set. In fact, just by looking at the
blue structure of Figure 5.5 it is possible to understand which are the type of resources
the data set is composed, while by focusing our attention on the red part we can figure
out which are the precise resources involved.

It is important to specify some details about the different kind of type links accepted
by the abstraction. In general, an instance node can be a member of more than one class
only if they are compatible. Two or more class nodes are compatible if they belong to
the same branch of the hierarchy. For instance, by examining the previous example,
the instance of Lombardy can be linked to Region and Place since they are is the same
branch but it can not be connected to Region and Country since these classes are in two
different branches. It is important not to violate this compatibility constraint because
otherwise instance nodes would be connected to distinct conflicting class nodes, and
consequently would have to be duplicated.

Another case regards instance nodes having no class nodes associated. This par-
ticular case has to be included among the compatible ones since input data could be
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5.2. Analytical abstraction: compound network

Person Place

Male Female Region Country

Fabio Alessandra TuscanyLombardy Italy

isEngagedWith

jobPlace

birthPlace birthPlace

countryjobPlace

country

Figure 5.5: An example of a small data set abstracted as a compound network. The forest (in blue)
defines the structure with ontological classes such as Person, Place and their specifications. The
graph describes their instances, that are the resources of the data set connected to each other with
semantic relationships.

inaccurate as in the case of DBpedia [78]. For example, the instance of DBpedia rep-
resenting the Divine Comedy1 in the 2014 dump is not described by any class of the
ontology of DBpedia.

5.2.1 Sorting

Hierarchical data structures can be unordered or they can be generated according to
a specific sorting criterion that sometimes can be not relevant and only an arbitrary
feature. In the case of Linked Data ontologies, there is no inherent ordering that is
worth to be preserved. In fact, considering an ontology in which the class Person and
Animal are defined, there is no reason to take one of the two classes before or after
the other. Even if there is no distinction between two copies of the same ontology
ordered in different ways, their corresponding visualization could be very divergent. In
fact, the sorting process is a simple but at the same time very crucial phase. Even if it
is exclusively responsible for sorting the nodes of the forest defined in the compound
network, it would cause serious stability problem in case it were not performed. In
fact, it is an essential property, for a visual representation technique, to make their
visualizations comparable among each other since it allow users to compare them and
possibly gain significant insights.

For instance, suppose to have two distinct ordering of the same data source. If their
corresponding forests were given as input to an order-preserving algorithm, substantial
differences could be respectively generated in the outcomes even if no distinctions were
present in the input except for the order. It is therefore fundamental to introduce a fixed
ordering for preventing stability problems.

A possible way for ordering a hierarchy is using its topology features as done by the
canonical ordering [111]. This sorting criterion provides a good stability and degree of

1http://dbpedia.org/page/Divine_Comedy
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Chapter 5. Visualizing Linked Data sets as abstract maps

comparability. We employ it for handling unordered forests that are specific forests in
which the order of the sibling nodes of every tree is not meaningful. This sort algorithm
is solely based on topology features since its sorting criteria strongly depends on the
depth of the tree branches.

More precisely, for each tree t, belonging to a given forest, the canonical ordering is
applied. A recursive procedure rsort consisting of a depth-first visit, is called by giving
t as input. A comparison function tcmp is used in order establish the priority between
pairs of sub-trees belonging to t. Sub-trees are sorted according to the return value of
the tcmp function. Given two sub-trees a and b, tcmp returns -1 if a comes first, +1 if
b comes first, 0 if a and b are equal in term of their topology. The function recursively
calls itself in order to find the first non-zero comparison result that is back propagated
to the chain of recursive calls. In case two sub-trees are found to be equal, then the one
having more children is placed first in the ordering by returning the difference between
the sub-trees children amount.

r s o r t = ( t ) −>
c h i l d r e n = ( i f t . c h i l d r e n ? t h e n t . c h i l d r e n e l s e [ ] )

f o r c h i l d in c h i l d r e n
r s o r t ( c h i l d )

t . c h i l d r e n . s o r t ( tcmp )

tcmp = ( a , b ) −>
f o r ( a i , b i ) in z i p ( a . c h i l d r e n , b . c h i l d r e n )

c i = tcmp ( a i , b i )
i f c i i s n t 0

re turn c i

re turn b . c h i l d r e n . l e n g t h−a . c h i l d r e n . l e n g t h

It is important to specify that the sorting algorithm discussed so far is applied only if
no relevant order is applied to the input forest. For instance, the lexicographic order of
the labels owned by the nodes could appropriate in some cases. Therefore, the sorting
process is performed only when it is really necessary, otherwise the already established
order of the input data is preserved.

5.3 Visualization transformation: spatialization and merging

The visualization transformation is responsible for the most crucial step in the visu-
alization pipeline. The data abstraction of the compound network is transformed into
a visual abstraction consisting in a set of spatialized data. The transformation mainly
performs a spatialization process assigning a shape and spatial coordinates to both class
and instances nodes.
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5.3. Visualization transformation: spatialization and merging

5.3.1 Coordinates

In order to refer tiles on flat surfaces, cartesian coordinates are not the only option.
Depending on the kind of tessellation and space-filling curve, a radix2 can be selected
for representing the numbers of a specific system of coordinates. For example given
a squared tessellation generated by the Hilbert curve, a system whose coordinates are
represented as base-4 numbers can be defined. Similarly, a hexagonal tessellation pro-
duced by the Gosper curve can be described by coordinates written as base-7 numbers.

Hilbert curve

A squared tessellation is required in the case of Hilbert. The relative coordinates system
generates numbers with radix 4 that will be composed only by the composition of the 0,
1, 2 and 3 digits. For example, a valid number would be 021. The resulting coordinates
are quite meaningful. In fact, their length reveals the number of iteration the curve has
performed, since each digit is respectively assigned at every iteration.

By looking at Figure 5.6, it is possible to examine the coordinates of the first three
iteration of the Hilbert curve. The first iteration is simply characterized by the coordi-
nates 0, 1, 2 and 3 respectively identifying the four tiles composing the tessellation. In
the second iteration, the number of coordinates increases due to longer path defined by
the curve. Moreover, the generated coordinates, 00, 01, 02, 03, 10 and so on, have one
more digit since the number of tiles to identify is increased too. It should be easier now
to understand the increase of the coordinates length in accordance to the increase of the
number of iterations.

It is interesting to look at how the tiles of a certain iteration are divided in the sub-
sequent one. This specific division is the same characterizing a quadtree, a particular
data structure often used for partitioning a two-dimensional space by recursively di-
viding it into four quads. Furthermore, by analyzing the composition of the resulting
coordinates it is possible to notice that they acquire the digits of the quad from which
they are generated with the addition of a new digit. For example, the coordinates 100,
101, 102, 103 of the third iteration start with the digits 10 inherited by the relative quad
in the second iteration.

Gosper curve

In the case of the Gosper curve, a hexagonal tessellation is necessary to fill the space.
The coordinates of the tiles are in the form of numbers expressed using the base 7. This
radix is due to the specific division that has to be applied at each iteration of the curve.
In this case, each hexagonal tile is divided into 7 scaled hexagons in the subsequent
iteration.

Figure 5.7 shows the first two iteration of the Gosper curve. The coordinates gen-
erated in first one are simply the 7 unique digits (i.e., 0, 1, 2, 3, 4, 5 and 6) used to
represent numbers in the septenary system.

Similarly to Hilbert, the coordinates of a certain iteration inherit the ones of the
hexagon from which they have been generated in the previously iteration.

Differently from Hilbert where a square can be perfectly divided in 4 more little
squares, 7 hexagons do not have the property of composing a bigger regular hexagon.

2A radix also known as base defines the number of unique digits used to represent numbers in a positional numeral system
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000 003 010 011 322 323 330 333

001 002 013 012 321 320 331 332

032 031 020 021 312 313 302 301

033 030 023 022 311 310 303 300

100 101 132 133 200 201 232 233

103 102 131 130 203 202 231 230

110 113 120 123 210 213 220 223

111 112 121 122 211 212 221 222

Figure 5.6: The first three iterations of the Hilbert curve are shown from left to right. Each tile in every
iteration can be identified by a number with radix 4. The length of the coordinates reveals the number
of iterations performed. In the first iteration coordinates are 0, 1, 2 and 3. In the secondo iteration
coordinates are 00, 01, 02, 03, 10 and so on.

In fact, as shown in Figure 5.8 only an approximation of a hexagon can be obtained.

5.3.2 Spatialization

The spatialization process is the most important one in the visualization pipeline. Given
the compound network, this phase proceeds to spatialize their instance and class nodes
by assigning them a shape and a position.

For example, as shown on the top right side of Figure 5.9, each instance node is
depicted as a squared tile placed at a certain position along the curve. Every tile is
coloured according to the class its corresponding instance node belong to.

Due to the space-filling curve, the tiles of the same class are sequentially adjacent
along the curve. In fact, it is enough to visit the tree of the compound network for deter-
mining a proper sequence of instances just by picking the leaves. This particular order-
ing allows to obtain a map in which tiles of the same colour are close together forming
compact regions. The resulting map on the bottom right side is therefore composed by
four regions representing class nodes. Furthermore, the area encoding technique can
be observed within the map. Since the elements are represented with tiles of the same
size, regions present an area proportional to the number of elements their correspond-
ing class contains. Hence, by comparing the area of two or more regions we can figure
out whether a region is bigger than the other in term of element amount.

So far, a general picture of how the spatialization process works has been presented.
However, contrarily to what described above, our approach does not generate all the
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Figure 5.7: The first two iterations of the Gosper curve represented with the tiles composing it and their
coordinates. Numbers with radix 7 are used for identifying tiles.

tiles before grouping them in regions. In fact, this particular procedure would results
to be not so scalable with data sets having thousands or millions of instance nodes. For
this reason, we devise a procedure that generates maps in a more efficient way without
the need of generating large amount of tiles making costly effort.

Our approach is a novel technique exploiting the fractal nature of space-filling curves
and their recursive composition. By taking advantage of the particular structure char-
acterizing these maps it is possible to save a lot of computation for generating them.
In fact, the resulting regions composing the maps can be partitioned into sets of shapes
that exist in a finite number of configurations. These shapes called macro tiles are a
scaled version of a tile produced as the aggregation of single tiles. As its counterparts,
macro tiles have the property of tiling a surface with no overlaps or gaps but filling a
larger amount of space. Thus, macro tiles compose a new set of tiles used for covering
the surface in a more efficient and scalable way.

By looking at the simple example shown in Figure 5.9, it is possible to see that 64
tiles are needed for creating the map on the top right side and only 22 macro and single
tiles (i.e., 10 macro tiles plus 12 tiles) for producing the map on the bottom left side.
It is therefore very effective to generate macro tiles instead of single tiles, since the
total amount of tiles (both single and macro) decreases. Moreover, the larger the data
set is the higher is the difference between the amount of necessary macro tiles and the
amount of single tiles that would be needed for filling the space.

The spatialization process can be described by a set of steps shown in Figure 5.10.
Given the forest defined in the compound network as input, the spatialization firstly
calculates the order of the map. Then, for each of the deepest classes of the forest,
some parameters are successively computed by following a pipeline. First some offsets
are calculated enabling the generation of base-n numbers that in turn allow to produce
the spatial coordinates and size characterizing the macro tiles. The pipeline is illustrated
step by step in the following.
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Chapter 5. Visualizing Linked Data sets as abstract maps

Figure 5.8: The first three islands of the Gosper curve are overlapped one over the other in or-
der to show how 7 hexagons do not form a bigger one but only an approximation. An interac-
tive version of this visualization can be consulted at http://bl.ocks.org/fabiovalse/
0670f38e8131b4f9e9da.

Order

It is a factor defining the size of a map and the total amount of elements it does contain
since it corresponds to the number of iterations a certain space-filling curve has been
generated. Given the total amount of elements the input forest contains (SIZE) and a
value identifying the space-filling curve and the type of tile employed (N ), the order
can be calculated as the ceiling of the logarithm with base N of SIZE:

order = dlogN SIZEe

In the case of Hilbert, N results to be equal to 4 since the curve fills the space with
squared tiles forming a quad layout. In the case of Gosper, N is equal to 7 since the
curve is characterized by a particular tessellation in which hexagonal macro tiles are
recursively divided in 7 scaled hexagons at every iteration.

Given the order of a map, it is possible to calculate which is the maximum amount
of elements that map can contain as N to the power of order:

max_n_elements = N order

In the case of Hilbert, a map of order 1 contains at most 41 = 4 elements, 42 = 16 in
a map of order 2, 43 = 64 with order 3 and so on. In the case of Gosper, this value
grow so much faster since N is equal to 7. An order-1 map comprises at most 71 = 7,
72 = 49 with order 2, 73 = 343 with order 3.

We can say that the order defines an upper bound for the number of elements that
can be contained by a map. For instance, for visualizing a data source composed by one
million and five hundreds thousands elements, a map of order = dlog4 1.500.000e =
11 would be necessary in the case of Hilbert and of order = dlog7 1.500.000e = 8 with
the Gosper curve.
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5.3. Visualization transformation: spatialization and merging

Figure 5.9: An example of spatialization using the Hilbert curve and a squared tessellation. The image
contains 6 sub-images describing the process of spatialization. The top left sub-image is the third
iteration of the Hilbert curve. The first four sub-images show how the curve has been used for
displacing instance nodes on the surface. Instance nodes are coloured according to the class they
belong to. On the bottom left side macro tiles are shown instead of singles tiles. On the bottom right
side the resulting map is depicted as the composition of its regions.
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...... ...

start
end
z

x
y
dx
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00
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023

offsets
calculation

base-n numbers
calculation

macro tiles
spatialization

class1 class2 class3

Figure 5.10: For each of the deepest classes of the forest, three offsets are calculated (i.e., start, end and
z). Then, the coordinates of the macro tiles, in the form of base-n numbers, are computed. Finally,
the macro tiles are produced by generating a spatial coordinate and a size.

Offsets calculation

In order to arrange the instance nodes on a surface along a certain space-filling curve,
it is necessary to define a linear sequence that keeps the elements of the same class
sequentially close to each other. For each class defined in the input, three offsets,
calculated from the beginning of the sequence, have to be calculated: start (s), end (e)
and z. s and e respectively denote where a class starts and ends within the sequence. A
simple loop iterating over the classes can be used for calculating them. For each loop
iteration, the amount of elements of a class is incrementally summed.
c l a s s e s . f o r E a c h ( c ) −>

c . s t a r t = s t a r t
c . end = s t a r t + c . v a l u e s . l e n g t h
s t a r t += c . v a l u e s . l e n g t h

c . z = g e t _ z c

The z offset requires a more complex procedure. In order to explain it, it is helpful to
analyze the structure and the composition of the resulting regions in term of macro tiles.
As previously discussed, the spatialization process produces regions as sets of macro
tiles that follow the path of a certain space-filling curve. By unwrapping the macro
tiles placed on the curve and by placing them on a straight line, as shown in Figure
5.11, it is much simpler to understand how a region is actually composed. Except for
the first and the last one, regions are constituted by a sequence of macro tiles with size
that is small at the beginning, increases in the middle of the sequence and decreases at
the end. Hence, each region can be seen as the composition of two “tails". The first
starting with small macro tiles and finishing immediately before the first biggest macro
tile. The second tail starting with the first biggest macro tile and finishing with the last
macro tile of a region.

For instance, the red region is composed by eight macro tiles. The first tail comprises
two small and one medium macro tile. The second tail instead is given by one big, two
medium and two small macro tiles.

It is now possible to define for each class the z offset as the mutual point where
the first tail ends and the second one starts. Another way to define z could be the
point denoting where the first biggest macro tile of a certain region is placed within the
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5.3. Visualization transformation: spatialization and merging

s1,z1 e1 s2 z2 e2s3 z3 e3 s4 z4 e4

Figure 5.11: The result of the spatialization step is shown as an unwrapped sequence of macro tiles
where the offsets s, e and z are marked for each class. In particular z defines the point in which the
biggest macro tile of a certain class starts within the sequence. In the case of the first blue class, the
s and z offsets coincide.

sequence.
The procedure for calculating it takes as input a class c and a logarithm base n.

There are two main cases, the first one in which s and z corresponds and the second
one in which they do not. The first case is the one regarding the first class within the
unwrapped sequence of macro tiles shown in Figure 5.11 (The offset s1 and z1 of the
blue class corresponds). Hence, the procedure provided below first return z equal to
zero only when the value of s is zero. Considering the example shown in Figure 5.11
this happen only for s1 and z1. Otherwise, the algorithm loops until the first biggest
macro tile is found. This can be computed by searching for the coordinates of the
biggest base-n number, less than the end offset, and composed by a digit followed by
all zeros.

g e t _ z = ( c , n ) −>
s t a r t _ n = ( c . s t a r t ) . t o S t r i n g ( n )
end_n = ( c . end ) . t o S t r i n g ( n )

i f s t a r t _ n i s ’0 ’
re turn p a r s e I n t ( s t a r t _ n , n )

i = s t a r t _ n . l e n g t h − 1
i n i t i a l _ i = i
w h i l e s t a r t _ n . l e n g t h <= end_n . l e n g t h

n e w _ s t a r t _ n = r e p l a c e _ c h a r s t a r t _ n , i , ’0 ’
n e w _ s t a r t _ n = ( p a r s e I n t ( ’ 1 ’ + Array ( n e w _ s t a r t _ n . l e n g t h − i + 1 ) .

j o i n ( ’ 0 ’ ) , n ) + p a r s e I n t ( n e w _ s t a r t _ n , n ) ) . t o S t r i n g ( n )

i f p a r s e I n t ( n e w _ s t a r t _ n , n ) < c . end
s t a r t _ n = n e w _ s t a r t _ n

e l s e
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Chapter 5. Visualizing Linked Data sets as abstract maps

b r e a k

i f i n i t i a l _ i i s s t a r t _ n . l e n g t h
i −= 1

e l s e
i n i t i a l _ i += 1

re turn p a r s e I n t ( s t a r t _ n , n )

Base-n numbers calculation

Given the order and the offset s, e and z, the base-n numbers representing the coor-
dinates of the macro tiles can be generated for each class in the input forest. As in
the previous step, this phase exploits the two tails composing every class. The first tail
ranges from s to z while the second one from z to e. The algorithm reported below
calculates for both tails their ranges that are respectively the difference between z and
s, and between e and z. The ranges, expressed as integers, are then converted to base-n.
The resulting base-n ranges internally embrace within their digits the number of macro
tiles that have to be generated and their size.

0

e1 s2 z2 e2s3 z3 e3 s4 z4 e4s1,z1

10 16 42 44 53 56 64

Figure 5.12: This diagram shows a precise example of the sequence of macro tiles depicted in Figure
5.11. Offset values are reported on top of the gray vertical ticks while their corresponding offset
labels are written on the bottom.

We consider now the example shown in Figure 5.12. Each class is taken into account
and their corresponding information are computed in the following:

• Blue class.

– First tail: z1− s1 = 0− 0 = (0)10 → (0)4
The difference between the offsets gives zero which converted to base-4 re-
mains zero. This means that no macro tiles are generated for the first tale of
the blue class. In fact, since s1 and z1 correspond to each other there is no
range between them.

– Second tail: e1− z1 = 10− 0 = (10)10 → (22)4
The difference between the offsets gives (10)10 which converted to base-4
gives 224. This value confirms the presence of 2 macro tiles of order 1 and 2
macro tiles of order 0.

• Red class.

– First tail: z2− s2 = 16− 10 = (6)10 → (12)4
The difference between the offsets gives (6)10 which converted to base-4
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5.3. Visualization transformation: spatialization and merging

gives (12)4. This value confirms the presence of 2 macro tiles of order 0
and 1 macro tile of order 1.

– Second tail: e2− z2 = 42− 16 = (26)10 → (122)4
The difference between the offsets gives (26)10 which converted to base-4
gives (122)4. This value confirms the presence of 1 macro tile of order 2, 2
macro tiles of order 1 and 2 macro tiles of order 0.

• Green class.

– First tail: z3− s3 = 44− 42 = (2)10 → (2)4
The difference between the offsets gives (2)10 which converted to base-4 re-
mains (2)4. This value confirms the presence of 2 macro tiles of order 0.

– Second tail: e3− z3 = 53− 44 = (9)10 → (21)4
The difference between the offsets gives (9)10 which converted to base-4
gives (21)4. This value confirms the presence of 2 macro tiles of order 1
and 1 macro tile of order 0.

• Orange class.

– First tail: z4− s4 = 56− 53 = (3)10 → (3)4
The difference between the offsets gives (3)10 which converted to base-4 re-
mains (3)4. This value confirms the presence of 3 macro tiles of order 0.

– Second tail: e4− z4 = 64− 56 = (8)10 → (20)4
The difference between the offsets gives (8)10 which converted to base-4
gives (20)4. This value confirms the presence of 2 macro tiles of order 1
and 0 macro tiles of order 0.

Finally, the base-n numbers corresponding to the coordinates of the macro tiles are
computed using the offsets, order and range digits as shown below in the getmt and
get_mt_code functions. In particular, the coordinate of a macro tile is computed in
the get_mt_code function. First a base-n number bn is converted to base-4. Then a
sequence of order − bn.length zeros is prepended to bn. Finally the coordinate of the
macro tile is returned as the substring of bn ranging from index 0 to index order −
digits.

ge t_mt_code = ( o f f s e t , o r d e r , d i g i t s ) −>
bn = o f f s e t . t o S t r i n g ( 4 )
bn = Array ( o r d e r − bn . l e n g t h + 1) . j o i n ( ’ 0 ’ ) + bn
bn = bn [ 0 . . . o r d e r−d i g i t s ]
re turn bn

ge t_mt = ( c , o r d e r ) −>
m a c r o _ t i l e s = [ ]

### Range from START t o Z
###
i f c . s t a r t i s n t c . z

o f f s e t = c . s t a r t
s t a r t _ t o _ z = ( c . z − c . s t a r t ) . t o S t r i n g ( 4 ) . s p l i t ( ’ ’ ) . r e v e r s e ( ) . j o i n

( ’ ’ )
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Chapter 5. Visualizing Linked Data sets as abstract maps

f o r d , i in s t a r t _ t o _ z
f o r j in [ 0 . . . p a r s e I n t ( d ) ]

d i g i t s = s t a r t _ t o _ z . l e n g t h − ( s t a r t _ t o _ z . l e n g t h − i )

mt = ge t_mt_code o f f s e t , o r d e r , d i g i t s
m a c r o _ t i l e s . push mt

o f f s e t += p a r s e I n t ( ’ 1 ’ + Array ( d i g i t s + 1 ) . j o i n ( ’ 0 ’ ) , 4 )

### Range from Z t o END
###
o f f s e t = c . z
z _ t o _ e n d = ( c . end − c . z ) . t o S t r i n g ( 4 )

f o r d , i in z _ t o _ e n d
f o r j in [ 0 . . . p a r s e I n t ( d ) ]

d i g i t s = z _ t o _ e n d . l e n g t h − i − 1

mt = ge t_mt_code o f f s e t , o r d e r , d i g i t s
m a c r o _ t i l e s . push mt

o f f s e t += p a r s e I n t ( ’ 1 ’ + Array ( z _ t o _ e n d . l e n g t h − i ) . j o i n ( ’ 0 ’ ) ,
4 )

re turn m a c r o _ t i l e s

Macro tiles spatialization

This step specifically corresponds to the actual spatialization of the data since a position
and a size are calculated for each macro tile. Every class is expressed as a set of base-n
numbers that are taken as input. Since these values define the coordinates of the macro
tiles in a non-cartesian coordinate system, a conversion is needed.

Every base-n number of a certain class is converted from a string of digits to a
specific position in the space and a size that will be subsequently used for displacing
and sizing macro tiles.

A layout function mt_function is used for computing the spatialization. It takes
as input a size value defining the display dimensions and a mapping function that is
responsible for coordinate conversion since it embodies the path of a certain space-
filling curve.

m t _ l a y o u t = ( mapping , s i z e ) −>

re turn ( d i g i t s ) −>
m = mapping d i g i t s

re turn {
x : m. j / Math . pow ( 2 ,m. n ) ∗ s i z e ,
y : m. i / Math . pow ( 2 ,m. n ) ∗ s i z e ,
dx : 1 / Math . pow ( 2 ,m. n ) ∗ s i z e ,
dy : 1 / Math . pow ( 2 ,m. n ) ∗ s i z e ,
d i g i t s : m. d i g i t s
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5.3. Visualization transformation: spatialization and merging

}

It is therefore necessary to write a specific mapping function in order to spatialize data
according to the particular features of a certain space-filling curve. For example, in the
case of Hilbert the following mapping function can be used:

h i l b e r t = ( d i g i t s ) −>
n = d i g i t s . l e n g t h
l = 1
i = 0
j = 0

f o r d in d i g i t s by −1
s w i t c h d

when ’0 ’
i_ temp = i
i = j
j = i_ temp

when ’1 ’
i += l

when ’2 ’
i += l
j += l

when ’3 ’
i_ temp = i
i = l − j − 1
j = 2∗ l − i _ t emp − 1

l = 2∗ l

re turn {
j : j ,
i : i ,
n : n ,
d i g i t s : d i g i t s

}

The result of the spatialization is a converted version of macro tiles that can be mainly
described by three attributes:

• name. It is the label of the macro tile.;

• x and y. They identify the position of the macro tile in a two-dimensional space;

• size. It depends on the kind of tile. For instance, square tiles need only a value
specifying the length of their sides. Rectangular tiles requires two values for their
sides. Hexagonal tiles are instead characterized by one value defining the side or
the radius.

5.3.3 Merging

The merging step is responsible for creating the final regions of the map corresponding
to the class nodes defined in the forest of a compound network. The spatialized macro
tiles are taken as input and merged together forming the most deep level of regions of
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...

... ...

...

......

Macro tiles to regions

Regions to regions

Figure 5.13: The most specific regions are firstly computed by merging macro tiles. Then, by follow-
ing the hierarchical relationships, bigger regions are constructed starting from the ones previously
computed.

56



i
i

“output” — 2017/1/10 — 10:04 — page 57 — #69 i
i

i
i

i
i

5.4. Visual mapping transformation

the forest. Then additional merging operations are performed in order to produce also
the regions corresponding to the class nodes positioned at an intermediate level in the
forest.

As shown in Figure 5.13, two different kinds of merge operation are executed:

1. Macro tiles to regions. It is the first merge operation computed and it is performed
only one time for each class in the forest. It computes the most specific regions
corresponding to the deepest class nodes in the trees of the forest. Macro tiles,
expressed by their parameters (i.e., x, y, size, digits), are taken as input and then
merged according to the class they belong to;

2. Regions to regions. It is a recursive operation that is performed on every tree of
the forest. It starts by merging the most specific regions previously generated.
By following the hierarchical relationships, from the leaves of a tree to its root,
regions are merged together forming bigger ones. The recursive procedure stops
when it reaches the nodes directly connected to the root.

p roc = ( node ) −>
i f node i s r o o t

re turn
e l s e

merge node . c h i l d r e n

The final result of the merging process, shown on the bottom of Figure 5.13, is a new
forest where the nodes of the trees are the regions of the map. The most wide and
generic regions are located at the top of the hierarchy while the most specific one at the
bottom.

5.4 Visual mapping transformation

The visual mapping transformation, specifically called viewport filtering in the case of
our approach, is the last step of the visualization pipeline. It is responsible for trans-
forming the map data into a map view which can be consulted by users.

First of all, it is essential to mention an important concept devised by Shneiderman
called Visual Information Seeking Mantra that is a relevant guideline, very important to
follow for the design and development of a visualization. The Mantra states “Overview
first, zoom and filter, then details on-demand" [91] and means that the overview of a
data set should be provided first in a visualization, then zooming and filtering mecha-
nisms should be made available in order to focus the attention on a specific part of the
data, specific details should be finally displayed only when demanded by users.

The viewport filtering presented in this section is a specific implementation of the
Mantra that literally follows it. In fact, an interactive, geometric and semantic zoom has
been used for implementing the zoom and filter operation of the Mantra. Moreover, this
particular zoom behaviour is very natural and simple to use in the case of cartographic
maps such as the one our approach constructs. It is a very common mechanism adopted
by several applications for the consultation of traditional geographic maps. The term of
viewport has to be intended as the map at a certain level of zoom displayed and visible
on the screen of a computer monitor.
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If properly implemented, the viewport filtering could really improve the perfor-
mance of a visualization showing large amounts of data. In fact, instead of visually
representing all the information describing a map, it only displays the ones that are
necessary, in particular the ones users expect to see in the screen they are watching.
There is no reason to spend costly effort for rendering all the data of the map when
only the part zoomed by users is really necessary since it is the only one she can see. In
the specific case of a map, the viewport filtering shows only the regions of the map the
user has zoomed without rendering the others that can not be seen at the level of zoom
reached. More precisely, only the regions of the map that appear in the screen will be
visualized.

For instance, supposing you are using a common map online service and you have
zoomed on a specific italian region such as Lombardy. There is no need of rendering
other countries in Europe, or even other continents such Asia since they cannot be seen
into the viewport the user is watching. This mechanism relies on the interactive nature
of an application and is very effective since it leaves users unaware about the filtering.

The viewport filtering accepts as input the map data produced by the visualization
transformation and shown at the bottom of Figure 5.13. This data structure is a for-
est where nodes are the class nodes of the compound network expressed by a set of
attributes defining their position, size and shape. The links connecting them are the
vocabulary links defined by the ontology. So, how can be such a structure transformed
into a interactive map view?

According to the Mantra, the first visualization presented to the users should be an
overview of the data set. For this reason, the most generic regions of the forest are firstly
shown on the map. The logical separation of the trees of the forest is represented in the
visualization as a spatial gap between the trees that are displayed as isolated regions.
The resulting representation visually resembles an archipelago of islands. This first
view gives a generic idea of the data set since it allow users to understand its general
structure. Each island is then characterized by its own particular hierarchical structure
that is initially depicted as the composition of its most generic regions, located on the
top of their corresponding tree. The details about how islands are placed on the space
will be given in Section 5.4.4.

It is important to specify that the terms forest and tree are used for referring to data
structures while the terms archipelago and island for dealing with the visual represen-
tations of the data.

The overview is only the starting point for the users who can additionally explore
the map by interacting with it as discussed in the following.

5.4.1 Semantic zoom

Once the map is ready and showing the overview, a zoom behaviour can be used by
users for focusing their attention only on certain parts of the map and thus examining
that specific portion of the data set. A particular feature called semantic zoom allows to
explore and visit the hierarchical structure characterizing each island within the map.

Differently from a conventional geometric zoom where objects vary only in terms
of their size, semantic zoom is a more complex kind of zoom mechanism that, beyond
scaling sizes, could also change the visual representation of objects and their presence
on the display by make them appearing and disappearing according to the zoom level
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5.4. Visual mapping transformation

Figure 5.14: On the left, the input is a hierarchical structure where nodes are regions that are displayed
in the resulting visualizations on the right. Initially, the overview of the data set is provided as a
visualization only composed by the regions at the top of the hierarchy. Then, the visualization is
updated according to the level of zoom. By zooming in, generic regions are substituted by their
children regions that provide a more specific view of the data set.

reached [18, 73].

Once users perform a zoom-in operation, the initial overview of the data set is re-
placed by a smaller portion of the entire map corresponding to the zoomed part. At
the same time, new content is loaded into the map for mainly characterizing it. More
specifically, the generic regions composing the islands shown in the overview are ex-
ploded and replaced by their child regions that represent more specific classes of the
hierarchies. Hence, from the user perspective, the act of zooming in corresponds to ask
for a more specific and richer representation of a part of the map, while the act of zoom-
ing out identifies the need of having a more generic view. In terms of data structure,
as shown by the diagram in Figure 5.14, the act of zoom-in and zoom-out respectively
correspond to visit lower level of the regions hierarchy, from the root to the leaves, and
vice versa.
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Chapter 5. Visualizing Linked Data sets as abstract maps

Figure 5.15: An example showing how the viewport (blue square) works. Since loading all the tiles
in a map could be quite costly, only the ones in the viewport are shown. In the real applica-
tion, the viewport would fill all the screen available but still no tiles would be loaded outside
of it. In this way, it is possible to give users the impression of having all tiles loaded even if
only the ones framed are shown. An interactive version of this visualization can be consulted at
http://bl.ocks.org/fabiovalse/bda5166279160e6ddab09f31e2b7a83d

5.4.2 Level of detail

The level of detail represents the most specific level a map can provide. It is a view that
can be obtained by reaching the maximum level of zoom allowed. Differently from
the overview and the intermediate levels of zoom, where regions are displayed on the
map, this particular view additionally decomposes regions in single tiles representing
the instance nodes of the compound network. Once users reach a very high level of
zoom, the level of details is automatically activated by the semantic zoom that explodes
regions into single tiles.

The level of detail represents the conclusion of the user exploration process that
starts with the overview showing the most generic parts of the data set, continues dis-
playing more specific and enriched portions of it, and concludes with tiles that are the
most specific piece of information the data set contains.

All these zooming operations, performed by users, are immediately processed by the
system that smoothly updates the map giving the feeling of getting closer to something
as happens with on-line map services. In order to provide a responsive user experience,
the viewport filtering handles performance issues. For example, the tiles, that have to
be loaded once the level of details is activated, must be filtered according to the portion
of map displayed. This particular feature prevents the loading of large amounts of data
that would make slower and less responsive the overall interaction. The example shown
in Figure 5.15 simulates how it is possible to create such behaviour.

A blue viewport is placed in the center of the visualization and represents the screen
typically consulted by users. By zooming and panning the map it is possible to imagine
that tiles are only displayed within the viewport boundaries.
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5.4. Visual mapping transformation

5.4.3 The English dictionary example

A simple example, whose interactive version is available on-line3 and displayed in Fig-
ure 5.16, is provided in order to better clarify how the visualization works. The data set
represented in the map is not a Linked Data one but the English Dictionary. Even if the
example is not so relevant in term of content, since it is not encoded as Linked Data, it
is useful for presenting how the approach works. The data set precisely counts 235,886
elements. It is therefore interesting to look at how the implementation of the map per-
forms in term of map and content loading. The visualization takes around 20 seconds
in order to display the map because all the operations (e.g., sorting, spatialization and
merging) for creating it are performed on the client side. Furthermore, by performing
these processes a pre-process step the time can be further decreased.

Moreover, the flat list of English words must be firstly transformed into a hierar-
chical structure in order to be compliant with our requirement. The prefixes of words,
starting from single letters to prefixes composed by three letters, are used in order to
build the hierarchy. The overview, as shown in Figure 5.16, is given by the regions
corresponding to the alphabetical letters. By zooming in, for instance on the letter A
region, its sub-regions, such as Ab, Ac and Ad, are automatically loaded. By addition-
ally zooming in, it is possible to reach a point in which no more sub-regions are loaded
but single tiles are shown as squares containing the label of the word they represent.

5.4.4 Islands Placement

As already introduced above, the particular forest data structure is visualized as an
archipelago of islands representing the trees of the forest. In this section, the process
for placing islands on a two-dimensional space is illustrated. The main idea is to ex-
ploit the force layout, typically used for representing node-link diagrams, for finding a
disposition for the islands. Normally, this layout deals with nodes depicted as simple
shapes such as circles or squares, or an image or icon.

First, it is necessary to displace circles in a non-overlapping way. A collision de-
tection algorithm, implemented by Mike Bostock4, has been used in order to guarantee
a defined padding between circles. The example, shown in Figure 5.17, implements
this approach and also allows to change the padding distance between circles using the
slider at the top. By using this algorithm, it is now simpler to place islands of simple
circles in a non-overlapping way. As shown in Figure 5.18, islands are enclosed in
circles that are in turn used as the input of the algorithm that is executed with padding
equal to zero. In fact, since the islands are within the circles non overlapping can occur.

In order to prevent different displacements at every execution of the force-layout, the
random seed is set to a fixed value in order to always produce the same configuration.

3http://bl.ocks.org/fabiovalse/c5e0d866c4832264ff2ab75412558245
4http://bl.ocks.org/mbostock/1747543
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Chapter 5. Visualizing Linked Data sets as abstract maps

The overview of the map shows the most generic
regions of the hierarchy corresponding to the letters
of the alphabet.

By zooming to a specific part of the map, regions
are exploded and replaced by their sub-regions that
describe their sub-hierarchy.

By additionally zooming in, more specific sub-
regions are loaded.

The deepest level of zoom shows the single ele-
ments of the data set. In this case the words of the
english vocabulary are depicted as squared tiles.

Figure 5.16: An interactive version of this visualization can be consulted at
http://bl.ocks.org/fabiovalse/c5e0d866c4832264ff2ab75412558245
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5.4. Visual mapping transformation

Figure 5.17: An interactive version
of this visualization is available at
http://bl.ocks.org/fabiovalse/
bf9c070d0fa6bab79d6a.

Figure 5.18: An interactive version
of this visualization is available at
http://bl.ocks.org/fabiovalse/
e7d2d1eba207b0a979ad.
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Chapter 5. Visualizing Linked Data sets as abstract maps

Linked Data
set

Compound
Network

Map Map
View

data
transformation

spatialization
and merging

viewport
filtering

Offline Online

data space,
system control,

server side

view space, 
user control,
client side

Figure 5.19: The visualization pipeline can be examined in terms of offline and online computation. The
dashed vertical line defines the boundary between the two kinds of computation. The offline part
corresponds to the data space, system control and server side of the application while the online part
normally represents the view space, user control and client side.

5.5 Offline vs. online

Given a series of operations needed for the construction of an application, it is inter-
esting to analyze whether their computation has to be performed offline or online. On
one hand offline data processing allows to avoid online execution effort, while on the
other hand online computation permits, if desired, to be totally independent from any
pre-processing procedure.

Offline and online computation define a distinct separation between different aspects
characterizing an application.

• data space and view space. The offline computation defines the space of the data
since it is responsible for different operations needed for preparing data such as
transformations, conversions or translations. Online computation instead repre-
sents the view space since it aims to visualize data and provide their visual repre-
sentations;

• system control and user control. The entity owning the control is another aspect
characterizing offline and online computation. While in the former the control is
kept by the system that performs its specific operations, in the latter users hold the
control since they decide which are the data they are interesting in by interacting
with the view;

• server side and client side. Since the visualization approach presented has been
devised for being developed with Web technologies, a distinction is given by the
execution location. Offline procedures are therefore executed on the server side
while online computation on the client side.

In the specific case of our visualization pipeline, there is no fixed configuration
establishing whether each step has to be executed offline or online. In fact, a high level
of flexibility is available in order to decide, depending on the specific case, which is
the best configuration. For instance, when large data sets have to be visualized, it is
convenient to move almost the whole computation offline in order to prevent online
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5.5. Offline vs. online

costly effort. On the contrary, when a very frequently changing data set has to be
handled, it is more advantageous to keep the computation online in order to quickly
provide data variations.

The boundary between offline and online, as shown in Figure 5.19, can be moved
to different points along the pipeline. The maximum point it can be shift on the right
is immediately before the viewport filtering once the map data have been computed. It
can be moved to the left even before the first step. Thus, while the offline part can be
avoided, the online part is always necessary at least reduced to the viewport filtering.
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CHAPTER6
Case studies

SOME case studies are presented in this chapter in order to demonstrate the ap-
proach previously described. We choose two well-known Linked Data sets of
the Semantic Web research field, DBpedia [7] and LinkedMDB [44], for test-

ing and evaluating the approach. They are very different in terms of content, size and
structure. DBpedia is a cross-domain data set, one of the biggest in the LOD cloud
with almost 5 million resources and structured with a hierarchical ontology. Linked-
MDB is a data set containing movie-related data, counting almost 700,000 resources
and modelled with a ontology composed of a collection of disconnected classes.

In order to apply our approach, we implemented two web-based prototypes for DB-
pedia and LinkedMDB. The web applications mainly constitute four components:

1. Map. It firstly displays the overview of the data set showing all the instances
and classes within it. Zoom and pan mechanisms allow users to filter out cer-
tain regions, move within the map and focus their attention on specific regions
and instances. Initially, only the regions with a suitable size for displaying their
label identifying their ontological class show it while the other region labels are
automatically loaded during a zoom action. Clicking on an instance on the map
triggers the loading of its properties both in the map itself and in the right-side in-
fobox. All the instances connected to the selected one are highlighted on the map
as red tiles linked by red lines. In the case of DBpedia, a metaphor for portraying
instances as cities have been introduced, in order to support users to get orienta-
tion within the map and get a feel about the content of a certain region. Cities are
visualized, as in traditional maps, as a point on a map with a label describing it.

2. Infobox. It comprises all the RDF triples in which a selected instance is involved.
In particular, in order to help users in the consultation of data, classes, data proper-
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6.1. DBpedia

ties, incoming and outgoing relations are organized and reported in a user-friendly
way, by grouping objects according to the predicates and replacing URI prefixes
labels. Furthermore, by clicking on an outgoing or incoming property, the rela-
tive content is loaded both on the map and in the infobox, allowing the data set
navigation.

3. Search Box. The search functionality allows to perform a text search for a specific
instance, show it on the map along with its connections, and load its properties in
the infobox.

4. Layers menu. Multiple aspects of a data set can be displayed on top of the main
visualization as additional thematic maps. Each region may be colored to repre-
sent for example: the depth of the corresponding class in the forest, the density
(i.e., a normalization of the number of instances) of RDF triples, the density of the
object properties, or the density of data properties describing the instances. The
layers menu, on the top left, allows to switch between the different thematic maps
available.

In the following, the two application prototypes of DBpedia and LinkedMDB will
be firstly described and then the results of their evaluation will be presented. Both
visual representations reflect the respective data set structure. The tree of DBpedia,
rooted on the class “Thing”, is represented by one island composed by several regions,
themselves partitioned in many hierarchical sub-divisions. An additional island has
been added for containing instances without a class [78]. Instead, the disconnected
classes of LinkedMDB produce a completely fragmented representation displayed as
an archipelago of islands, since no root is defined in the ontology. Moreover, it is
possible to notice that, differently from DBpedia, the regions of LinkedMDB have no
sub-division.

In order to demonstrate the wide applicability of the approach, on common data
sources not compliant with Linked Data principles and unrelated to Semantic Web, an
additional use case constructed with the NCBI taxonomy database, is illustrated.

Finally, an experimental study for displacing resources according to a similarity
measure is presented by showing some preliminary examples.

6.1 DBpedia

DBpedia is one of the most important and successful Linked Data sets within the Se-
mantic Web. It has a significant size, in fact it contains almost 5 million resources
within the 2014 dump and it presents a hierarchical structure since its ontology counts
around 700 classes. Figure 6.2 shows a screenshot of the application we developed and
available at http://wafi.iit.cnr.it/lod/dbpedia/atlas. The largest
classes in the data set (e.g., Agent, Place, Work and Species) can be easily identified
by the initial overview. Another insight regards the Career Station class that is one of
the largest, but its content appears initially quite unusual. By analyzing it, it is possi-
ble to discover that it is totally flat since it has no subclasses and it contains resources
representing the step in the career of people, in particular athletes.

Moreover, by further investigating on these resources it is possible to notice that
they are very peculiar since they are actually the result of the conversion of specific
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Chapter 6. Case studies

Wikipedia relationships into DBpedia. For instance, considering the resource of the
Zinedine Zidane soccer player1, it is possible to find ten RDF triples having hasCareer-
Station as predicate and as object an instance of the class CareerStation. These Career-
Station resources have a URI such as http://dbpedia.org/resource/Zinedine_Zidane__5,
.../Zinedine_Zidane__6, .../Zinedine_Zidane__7 and so on. The interesting aspect is
that, differently from the other resources of DBpedia, there exist no Wikipedia arti-
cle corresponding to these resources. However, by looking at the Wikipedia article of
Zinedine Zidane2 we can find in the infobox (Figure 6.1) on the top right of the page
the information from which the CareerStation resources have been created. In fact, by
looking at the section labeled as Senior career it is possible to see the relationships
of the soccer player with the team he played in the past with some information such
as the time periods, number of appearances and goals. It is now clear that the reason
of describing the relationships, connecting a soccer player to a team, as a resource of
DBpedia has been driven by the fact that RDF does not allow to specify attributes on
predicates. This means that RDF does not enable to simply define a relationship be-
tween a player and a team using a predicate, such as playedFor, having one or more
attributes associated. Instead, it is necessary to define a new resource representing the
step in the career of a player in a precise period of time, for a specific team, playing a
certain amount of matches and scoring a certain amount of goals.

Figure 6.1: A portion of the infobox of the Wikipedia article about the soccer player Zinedine Zidane. It
is interesting to look at the information under the Senior career section. In fact, each row of the table
reported in this section, such as "1992–1996 Bordeaux 139 (28)", has been translated by DBpedia in
a resource like http://dbpedia.org/page/Zinedine_Zidane__5.

1 http://wafi.iit.cnr.it/lod/dbpedia/atlas/#Zinedine_Zidane
2 https://en.wikipedia.org/wiki/Zinedine_Zidane
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Chapter 6. Case studies

Figure 6.2: A screenshot of the DBpedia application, available online at http://wafi.iit.
cnr.it/lod/dbpedia/atlas. The code is open source and hosted on GitHub (https:
//github.com/fabiovalse/dbpedia_atlas). The map, composed by a main island and
a smaller one containing the untyped instances, reflects the hierarchical structure of the ontological
tree of DBpedia.

By interactively zooming in and out of the map, performing searches and looking
at how resources are connected, it is possible to find more interesting patterns. For
instance, as shown in Figure 6.3, 6.4 and 6.5, it is possible to compare three resources
belonging to the class Company: Google3, Apple4 and Microsoft5. By looking at the
distribution of the entities connected to these companies we can see that Google is con-
nected to a large amount of Website resources and a considerable amount of Software
resources. Apple is connected only to a few Website resources and a large number of
Software resources. Microsoft appears to be more similar to Apple than to Google.

In Figure 6.2, the resource http://dbpedia.org/resource/The_Beatles
is currently selected and it can be localized on the map by the yellow placemark. The
red links starting from it represent the relationships of The Beatles with other resources
in DBpedia. Most of the links going towards the top of the map, are directed to the
Works region where the songs and the albums of the band are located. The second
biggest flow pointing to the bottom right side of the map, are directed to the Singer
region, as shown by the city labeled as Freddy Mercury.

3http://dbpedia.org/resource/Google
4http://dbpedia.org/resource/Apple_Inc.
5http://dbpedia.org/resource/Microsoft
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6.1. DBpedia

Figure 6.3: The distribution of instances (red dots) connected to the entity Google (yellow placemark). A
large number of dots gathers in the Website region (top left) and in the Software region (top middle).

Figure 6.4: When Apple Inc. is selected, the amount of websites decreases significantly, while Software
becomes much more prominent. This is especially true for the lowest part of the region (Video Game).
An interesting conglomerate appears on the left (Device).

Figure 6.5: The distribution for the instance Microsoft is more similar to the one for Apple Inc. than
it is for Google. However, with regards to both Device and Website, it seems that Microsoft falls
somewhere in between the other two.
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Chapter 6. Case studies

6.2 LinkedMDB

LinkedMDB is another important initiative within the LOD cloud that is derived from
the popular online Internet Movie Database6 (IMDb) concerning films, television pro-
grams, cast, production crew, fictional characters, their biographies and so on. As
shown in Figure 6.6, LinkedMDB has a very different structure compared to the one of
DBpedia. The map seems an archipelago of islands generated from the peculiar ontol-
ogy the data set owns. The main reason behind this particular configuration is that no
hierarchical structure has been adopted for LinkedMDB but only a disconnected list of
ontological classes. This can be noted in the prototype, by interactively zooming on the
map, and seeing that no sub-regions appears.

In Figure 6.6, the resource http://dbpedia.org/resource/Three_Days_
of_the_Condor is currently selected and it can be localized on the map by the yel-
low place mark. The red links starting from it represent the relationships of the movie
with other resources in LinkedMDB. Different kind of resources are connected to it:
Performance, Actor, Writer, Director are just the major ones. By zooming into the map
also it is possible to discover other relationships with resources belonging to the tiniest
islands corresponding to the classes Editor, Film Location and Film Subject.

Among the insights that can be discovered within the data set it is interesting to
understand which is the role of the Performance region since it is one of the biggest.
Their elements basically represent the connection between a certain actor/actress and
the character he/she played in a specific movie. Knowing this allows to find which are
the movies in which a certain character has been played. For instance by searching for
Neo it is possible to see different performance of Keanu Reeves in the Matrix movies.
Otherwise, searching for the character as “Batman" allows to see the different perfor-
mances made by distinct actors (e.g., Christian Bale, George Clooney) in the many
movies shoot on Batman.

6http://www.imdb.com/
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Chapter 6. Case studies

Figure 6.6: A screenshot of the LinkedMDB application, available online at http://wafi.iit.
cnr.it/lod/linkedmdb/atlas. The map, composed by an archipelago of islands, depicts
the structure of the disconnected classes forming the ontology of LinkedMDB.

6.3 Evaluation

We carried out a user evaluation with 19 users, collecting both qualitative and quanti-
tative data. Since the intended users are people wanting to approach or to better under-
stand a Linked Data set, all the testers we chose have a computer science background
(no lay users were recruited). The 19 participants were 12 males and 7 females and
they had different age ranges: 5 were between 20 and 30, 7 between 30 and 40 and 7
between 40 and 55.

Half of the people were presented with the DBpedia application, while the other half
the LinkedMDB one. At the beginning of the session with each user, we asked them to
read a short description about the dataset. For instance, in the case of DBpedia we used
the following description:

DBpedia is a large collection of structured data automatically extracted from Wikipedia.
It contains a lot of resources (e.g. “Galileo Galilei", “Pisa", “The Beatles", “Divine
Comedy") organized in classes (e.g. “Person", “City", “Band", “Book"). Classes are
connected together, forming a hierarchical structure from generic to specific. For ex-
ample, “FootballPlayer" is a more specific class than “Athlete", which itself is more
specific than “Person". Resources are also connected to each other (e.g. “Pisa" is the
place of birth of “Galileo Galilei").

Then, we gave them some time (5 to 10 minutes) for freely interacting with the ap-
plication. Finally, they had to fill out a questionnaire. To answer some of the questions
they had to perform some tasks using the application. The questionnaire has been struc-

74

http://wafi.iit.cnr.it/lod/linkedmdb/atlas
http://wafi.iit.cnr.it/lod/linkedmdb/atlas


i
i

“output” — 2017/1/10 — 10:04 — page 75 — #87 i
i

i
i

i
i

6.3. Evaluation

tured in four distinct parts for evaluating different aspects of the visualizations and the
applications.

1. Free interaction. Three questions were defined for verifying whether the main
features (e.g., zoom and pan, search, and click on the map) of the interface had
been discovered and used by testers during the initial free interaction phase.

2. Tasks. Eleven tasks have been presented to users for testing if the application
is useful for: i) visually identifying which are the main regions within a map;
ii) looking up and locating resources; iii) recognizing which are the connections
between resources, and iv) understanding how resources are categorized.

After they finished each task, users were asked to state whether it was easy to
solve. We adopted a scale of 5 balanced values (i.e., really difficult, difficult,
neither easy nor difficult, easy and really easy) ranging from 1 to 5 for scoring the
results of each task.

3. Comprehension. Three questions were asked for measuring whether the users had
grasped the main aspects of the visualizations (e.g., the meaning of regions and
their size).

4. Final comments. Four questions were finally asked for understanding whether the
users thought the application was aesthetically pleasing, easy to use, useful and/or
self-explanatory. We used a Likert scale [64] ranging from 1 to 5 for scoring the
answers of the users about the aforementioned properties.

6.3.1 Results

The results of the test show that in the case of DBpedia 80% of the users autonomously
discovered they could use the search feature and click on the map, while 70% the zoom
and pan behaviour. In the case of LinkedMDB, all the users discovered they could
click on the map, 88% used the search function and 75% of them used the zoom and
pan mechanism. By taking into account those results, it is reasonable to think that
the application requires a clearer way of showing that the zoom and pan feature is
available. The plus/minus zoom buttons often included in interactive web maps could
be a solution.

The study produced very promising results considering the percentages of correct
answers and the average scores (Table 6.1 and 6.2) and also gave directions for im-
proving the strength of the application in communicating the data set characteristics.
The mean score of every task is above average for both DBpedia and LinkedMDB. One
of the main aspects that came out from the study is the need for a closer interaction
between the visualization of the map and the infobox. In fact, by observing the users
when executing the tasks, we noticed that some are more inclined to navigate the map,
while others prefer to just read the infobox.

All the users understood that the size of a region is determined by the amount of
resources contained within it, while only a few of them really perceived the complexity
of its hierarchical sub-structure. Almost all the users agreed on the aesthetic, ease and
usefulness of the application while only a part of them think that it is self-explanatory,
suggesting that a more intuitive user interface can be envisaged. A user suggested to add
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Chapter 6. Case studies

an introductory tutorial for explaining the main features the first time the application is
accessed.

Questions % Avg

Free
Interaction

Have you used the pan & zoom feature? 70% -
Have you used the search feature? 80% -
Have you clicked on the map? 80% -

Tasks

Which is the biggest class in the dataset? 90% 3.6
Which are the main classes? Try to explain your answer. 100% 4.0
Where is the resource “The Matrix"? 100% 4.2
Which are the resources connected to “The Matrix"? 100% 4.2
Where is the resource “The Beatles"? 100% 4.2
Which are the resources connected to “The Beatles"? 100% 4.3
Is “Alan Turing" directly connected to “Noam Chomsky"? 90% 3.7
Is “Divine Comedy" directly connected to “Dante Alighieri"? 90% 3.5
Is “Earth" directly connected to a resource classified as “Place"? 70% 3.4
Is “Crow" directly connected to a resource classified as “Food"? 80% 3.9
Which are the classes of the resource “Danube"? 100% 3.7

Comprehension

Some regions are bigger than others because:
1) they contain more resources;
2) they contain more classes;
3) they are deeper in the hierarchy;
4) they have more connections.

100% -

Does region “Agent" seem more complex than “Place"?
1) Yes, “Agent" is more complex;
2) No, “Place" is more complex;
3) They are of similar complexity;
4) I don’t know.

20% -

Does region “CareerStation" seem more complex than “Place"?
1) Yes, “CareerStation" is more complex;
2) No, “Place" is more complex;
3) They are of similar complexity;
4) I don’t know.

90% -

Final
Comments

The map is aesthetically pleasing - 4.1
The map is easy to use - 3.4
The map is useful - 3.6
The interface is self-explanatory - 3.0

Table 6.1: The overall result of each question of the survey about DBpedia grouped by category. The
percentage of correct answers and the average score reported by users are shown in the last two
columns. Scores range on a scale from 1 to 5 (from really difficult to really easy in the case of the
tasks, while from totally disagree to totally agree in the case of the final comments).
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6.3. Evaluation

Questions % Avg

Free
Interaction

Have you used the pan & zoom feature? 78% -
Have you used the search feature? 89% -
Have you clicked on the map? 100% -

Tasks

Which is the biggest class in the dataset? 88% 3.7
Which are the main classes? 67% 3.8
Where is the resource “The Matrix"? 100% 4.6
Which are the resources connected to “The Matrix"? 78% 3.9
Where is the resource “Sidney Lumet"
(the film director)? 89% 4.3

Which are the resources connected to “Sidney Lumet"
(the film director)? 77% 4.4

Is “Blade Runner" directly connected to
“Rutger Hauer"? 100% 3.8

Is “Marcello Mastroianni" directly connected to
“Claudia Cardinale"? 78% 3.2

Is “Christmas (Film Subject)" directly connected
to a resource classified as “Actor"? 100% 3.9

Comprehension

Some regions are bigger than others because:
1) they contain more resources;
2) they contain more classes;
3) they are deeper in the hierarchy
4) they have more connections.

89% -

Does region “Film" seem more complex than “Actor"?
1) Yes, “Film" is more complex;
2) No, “Actor" is more complex;
3) They are of similar complexity;
4) I don’t know.

44% -

Does region “Performance" seem more complex than “Film"?
1) Yes, “Performance" is more complex;
2) No, “Film" is more complex;
3) They are of similar complexity;
4) I don’t know.

22% -

Final
Comments

The map is aesthetically pleasing - 3.8
The map is easy to use - 3.6
The map is useful - 3.9
The interface is self-explanatory - 2.9

Table 6.2: The overall result of each question of the survey about LinkedMDB grouped by category.
The percentage of correct answers and the average score reported by users are shown in the last two
columns. Scores range on a scale from 1 to 5 (from really difficult to really easy in the case of the
tasks, while from totally disagree to totally agree in the case of the final comments).

77



i
i

“output” — 2017/1/10 — 10:04 — page 78 — #90 i
i

i
i

i
i

CHAPTER7
Experimental studies

This chapter presents some preliminary studies that, in future developments, could be
included in the main approach described in chapter 5. As already performed within
atlases, thematic maps can be used for showing additional information about a certain
geographic area. For this reason, examples of thematics maps applied to the ones pro-
duced by our approach are presented. Then, in order to show how flexible the approach
presented in this thesis is, a prototype developed using data not coming from a Linked
Data set is described. Finally, a study about the arrangements of elements on a surface
based on their similarity is illustrated.

7.1 Thematic Maps

In this section the specific concept of thematic map devised for the approach presented
in this thesis is illustrated. Traditional thematic maps are defined by Wikipedia as a
type of map especially designed to show a particular theme connected with a specific
geographic area. These maps can portray physical, social, political, cultural, eco-
nomic, sociological, agricultural, or any other aspects of a city, state, region, nation,
or continent1.

The idea of thematic map presented here is very similar. A thematic map is an
additional map that can be used in order to show supplementary characteristics and
features of a data set. In the case of Linked Data sets there are several aspects that can be
displayed such as the classes categorizing instances or the predicates connecting them.
Two examples have been implemented on the DBpedia and LinkedMDB prototypes.

The first one regards the level of depth of the classes in the ontology they belong. It is

1 http://libweb5.princeton.edu/visual_materials/maps/websites/thematic-maps/
firstxthenynowz.html
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7.1. Thematic Maps

possible to show by colouring regions with a sequential colour scheme where the darker
the colour the deeper the level of a class is. By looking at the result of this procedure in
Figure 7.1, it is easy to understand which is the structure of the two data sets. Different
colours characterize the thematic map of DBpedia and denote its hierarchical structure,
shallow (e.g., TimePeriod, CareerStation and PersonFunction) and deep regions (e.g.,
the sub-regions of Agent and Place) are both present in the map. On the contrary, all
the islands of LinkedMDB are coloured in gray due to the flat structure of the data set
presenting no hierarchical level.

The second kind of thematic map, shown in Figure 7.2, is related to the density of
object properties characterizing the instances belonging each class of the ontology. As
before each class is coloured according to a sequential colour scale. The darker the
colour the more dense the region. In the case of DBpedia, the overall map is quite
similar to the previous one since the bottom-left side of the map is lighter denoting a
less dense situation than the top-right side where the most dense classes can be found
(i.e., Soccer manager, Horse trainer and Jockey). Differently from the previous flat
map, LinkedMDB has a different situation where there are not so dense classes like
Performance, quite dense ones such as Interlink and Actor and Film as the most dense
one.
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Chapter 7. Experimental studies

Figure 7.1: Thematic maps of DBpedia and LinkedMDB, showing the depth of the classes in their
ontology (the darker, the deeper). DBpedia has an island composed by several hierarchical levels,
while LinkedMDB has an archipelago of totally flat islands. By inspecting the map of DBpedia, it
can be seen that the deepest level of the ontology corresponds to the small Diocese class (top right).
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7.1. Thematic Maps

Figure 7.2: Thematic maps of DBpedia and LinkedMDB, showing the density of object properties of
each class (the darker, the more dense). By inspecting the maps, it can be seen that the most dense
classes are Soccer manager, Horse trainer and Jockey for DBpedia and Film for LinkedMDB. The
maps can also be compared in size since they share the same scale.
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Chapter 7. Experimental studies

7.2 NCBI Taxonomy database

The NCBI Taxonomy database2 is the standard nomenclature and classification repos-
itory for the International Nucleotide Sequence Database Collaboration (INSDC). It
includes the names and the taxonomic lineages of all known organisms. The classifica-
tion is a phylogenetic taxonomy in which the structure corresponds to the evolutionary
history of the tree of life. This particular structural organization contrasts the traditional
approach defining the taxonomy with species differing from each other by a diagnosis
stating their distinctive character. The top level of the taxonomy is composed of the fol-
lowing taxa: Cellular Organisms, Viruses, Viroids, Unclassified sequences and Other
sequences.

Even if the total amount of entries the taxonomy contains is 1.482.0593, it currently
represents only 10% of the species on the planet.

Figure 7.3: On the left the initial overview of the visualization shows which are the main classes in
the taxonomy (e.g., Cellular organisms and Viruses). Cellular organisms is the biggest class and
by zooming in, it is exploded and replaced by its children Eukaryota, Bacteria and Archaea (on the
right). An interactive version of this visualization can be consulted at http://bl.ocks.org/
fabiovalse/61187c0df9096d33820ac65d0467822c.

Even if the NCBI taxonomy database is not modelled and published according to
the Linked Data principles, it is possible to apply our approach and build an interactive
application as shown in Figure 7.3 and 7.4. In order to implement it, a variation of the
visualization pipeline, presented in Chapter 2, has been performed. In fact, a compound
network was not generated by the data transformation process since it is a specific
abstraction suitable for Linked Data but not so fitting for the NCBI data. More precisely,
a variation of the compound network constituted only by a tree without a graph has been
constructed.

The spatialization step has been performed using the curve of Hilbert and a squared
2http://www.ncbi.nlm.nih.gov/taxonomy
3Data was downloaded in July 2016
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7.2. NCBI Taxonomy database

Figure 7.4: Intermediate levels of zoom show intermediate classes in the hierarchy. By additionally
zooming into the map it is possible to reach the maximum level of detail showing single tiles contain-
ing the labels of their corresponding species.
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Chapter 7. Experimental studies

tessellation. On the left-side of Figure 7.3 the overview of the data set is depicted
and shows that Cellular organisms and Viruses are the main classes of the taxonomy in
terms of size. By zooming in, the regions of the maps are exploded and replaced by their
sub-regions (Right side of Figure 7.3 and on the top of Figure 7.4). As shown on the
bottom of Figure 7.4 the maximum level of detail shows the squared tiles corresponding
the species of the taxonomy.

7.3 Similarity-based resource placement

In this section, an experimental work, regarding the similarity between the elements of
a data set and their positioning, is presented. So far, the arrangement of the elements of
a given data set has been always described as the result of a spatialization process based
on the use of a space-filling curve. This procedure guarantees that elements belonging
to the same class are adjacently placed forming compact regions. However, no specific
positioning has been established within the regions. In other words, by looking at the
elements inside a region there is no criteria that keep close two elements except the fact
that they belong to the same class. What if the elements were placed within regions
according to a certain criteria based on their similarity?

The following experiments have been conducted using the data of DBpedia since it
presents a strong imbalance between the amount of instances and classes. This peculiar
feature produces regions, at the bottom of the regions hierarchy, composed of thousands
of instances that could be hardly explored since no more hierarchical distinctions are
available at this level. Therefore, it is possible to extend the hierarchy of DBpedia by
applying hierarchical clustering algorithms for additionally grouping instances.

The first experiment, shown in Figure 7.5, tries to cluster the instances of 6 ran-
domly selected classes (i.e., Guitarist, Poet, Cheese, Animanga Character, Monument
and Pope). The instances are placed on the columns while their predicates on the rows
forming a matrix. The cells of the matrix show whether an instance holds a certain
predicate (coloured cell) or not (empty cell). Therefore, each column describes an in-
stance in term of their predicates that in turn constitute a vector composed by zeros and
ones. Hierarchical clustering can be then executed by giving as input:

• The vectors describing the instances;

• A distance metric for measuring the distance between the two items expressed as
vectors. Three metrics have been chosen: the Euclidean distance, the Manhattan
distance and the Max distance;

• A type of linkage for determining the distance between two clusters. The available
kind of linkage are Average, Single and Complete;

• A stopping criterion also called threshold. When every cluster is more than thresh-
old distance apart, clustering is stopped and the current set of hierarchies is re-
turned.

The results of the clustering are then used in order to sort the instances and keep the
most similar ones adjacent in the sequence they are depicted in the matrix. Using this
ordering along with a coloured scale it is possible to see the clusters directly within the
matrix. The predicates on the rows have been sorted in descending order from the most
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7.3. Similarity-based resource placement

Figure 7.5: A zoomed portion of the matrix showing the results of the hierarchical clustering algorithm
performed on the elements of some classes of DBpedia. Instances are placed on the columns while
predicates on the rows. Each column is a vector describing an instance in term of predicates. Similar
instances are kept close and depending on the threshold coloured according to the results of the
clustering process. An interactive version of this visualization can be consulted at http://bl.
ocks.org/fabiovalse/cc44f1a671e3ce135775.

frequent to the least frequent one. Some insights can be seen exploring the visualiza-
tion, for instance by selecting the Pope class, it is possible to see that different kinds of
popes are described with similar sets of predicates. In fact, by setting the threshold of
the hierarchical clustering to 2.9 with the Euclidean distance, the popes of Alexandria,
the antipopes and the popes named John are grouped in different clusters. The class of
Cheese is characterized by a very low amount of predicates and its instances are easily
grouped since they are very similar in terms of the predicates they hold.

The second experiment, shown in Figure 7.6, has been adopted, starting from the
previous one, for depicting clusters on the maps instead of using matrices.

85

http://bl.ocks.org/fabiovalse/cc44f1a671e3ce135775
http://bl.ocks.org/fabiovalse/cc44f1a671e3ce135775


i
i

“output” — 2017/1/10 — 10:04 — page 86 — #98 i
i

i
i

i
i

Chapter 7. Experimental studies

Figure 7.6: The evolution of the previous experiment uses a map instead of a matrix. Clusters are
shown as the regions of a certain class that can be selected using the dropdown menu on the top.
Every time the value of the threshold is changed, the hierarchical clustering is executed and regions
are updated on the map. An interactive version of this visualization can be consulted at http:
//bl.ocks.org/fabiovalse/f290de8239df9e5ee1d8.
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CHAPTER8
Conclusion

THE work presented in this thesis consists of an approach for visualizing an entire
Linked Data set. Indeed, its peculiarity is the overall visualization that comprises
all the information composing an RDF graph. The ontology, its classes and the

relative instances are all represented in different forms within a visualization based
on cartographic principles. The visualizations resemble traditional geographical maps
even if abstract data are arranged on the space instead of geographic places. In order to
generate these maps, a spatialization process that assigns a shape, a size and a position
on a two-dimensional space is performed. In particular, a procedure based on the use
of space-filling curves has been adopted and a novel technique, exploiting the fractal
nature of these curves, has been devised for spatializing data in a scalable and efficient
way as demonstrated by the prototype presented in Chapter 6.

The interactive mechanisms characterizing these visualizations provide an intuitive
method for the exploration of the maps as illustrated in Chapter 5 and 6. The car-
tographic metaphor allows to reuse the map-reading abilities, previously learned by
humans, to get insights from complex and structured sources of data such as Linked
Data.

In order to test its efficacy, the approach has been applied to the well-known Linked
Data sets of DBpedia and LinkedMDB by developing two distinct Web applications as
previously described in Chapter 6. By examining the outcome of the evaluation, we
find both strengths and weaknesses, which overall characterize a promising approach.

• The overview initially presented when the map-like visualization is loaded is very
effective in communicating which are the main ontological classes of a data set.
In fact, the area encoding technique used by our visualization supports users in
getting this information.
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Chapter 8. Conclusion

• The lines representing the relationships between the instances turned out to be
very powerful. In fact, once a target instance is selected, the visualization im-
mediately gives a gist of the classes of the other instances to which the target is
related by drawing red arcs over the map for expressing the relationships. This
feature is extremely useful when two or more sets of lines, characterizing distinct
instances, are compared, since they can provide additional insights and patterns.
Unfortunately, there is no feature yet allowing to simultaneously comparing sets
of lines. A first improvement would be to support two sets of lines and color them
with different colors to let users clearly distinguish the two sets.

• Thematic maps represent a valid instrument for showing even more information
about the data set. They can be used as additional informative layers providing
for example statistical estimations about RDF triples or more features about the
ontology.

• The zoom mechanism for filtering the data set allows users to concentrate their
attention only on some specific parts in a very intuitive way as the modern online
maps services provide. An advancement could be the inclusion of a mini overview
window for allowing users to orient themselves once the map is zoomed in.

• The zoom is the main instrument enabling the navigation of the hierarchical struc-
ture of the ontology and it actually gives good results but only for few levels. The
more the map is zoomed the more it becomes difficult to precisely perceive region
containment since the map actually uses only the stroke width for characterizing
the depth levels of the hierarchy. More methods for differentiating the hierarchical
levels, defined by the boundaries of the regions, are needed in order to make the
hierarchy fully comprehensible. For instance, colours, stroke width, line styles
could be combined together in order to make the hierarchy clearer.

• The label placement is one of the main challenges faced by map producers. In
our approach, this feature has been simply implemented by placing the labels of
the classes in the centroid of every region. This method produces maps in which
labels can overlap each other or could be placed on a point outside the boundaries
of their corresponding region. While the former case is caused by the excessive
length of the labels, the latter is due to the particular shape characterizing concave
regions. More sophisticated techniques could be introduced for producing a better
layout that would make the exploration of the maps even clearer. For instance,
an advanced version of the current semantic zoom could compute the proper level
of zoom at which each label should be shown, by analyzing its length and the
available space its corresponding region owns. Instead of horizontally placing all
the labels, some of them could be slightly rotated to fit inside the boundaries and
to better cover the space of their corresponding region.

A relevant discussion regards the requirements data have to respect in order to be
compliant with the approach.

• The hierarchical structure describing ontologies is an advantageous characteristic
to make use of, since it provides an organized layout to the visualizations. How-
ever, it defines a precise condition that must be respected by the input data. In fact,
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there are particular situations in which ontologies are modelled as graph structures
and the approach would result to be not applicable. In this case, it is worth trans-
forming the graph only if a reasonably small amount of links have to be removed
in order to obtain a hierarchy.

• An instance node can be connected to multiple class nodes only if they are com-
patible as described in Chapter 5. Thus, data sets presenting incompatible class
nodes result to be not compliant with our approach. A solution to this compati-
bility problem would be the duplication of the instance nodes for placing them in
different regions within the map. Even if this solution seems to be inadequate, it
has been already adopted by some Linked Data sets in their data modelling phase.
For example, LinkedMDB creates different instance nodes for those people having
multiple professions, such as actors that are also directors and film producers.

Among the performed experimental works, it is worth to mention the studies carried
out on similarity. The intent of this analysis is to decrease the high imbalance between
the number of classes and the amount of instances typically characterizing Linked Data
sets. The problem clearly emerges during the user exploration. In fact, once a high level
of zoom is reached, hundreds and sometimes even thousands of instances are displayed
without a precise arrangement in the space except the fact that they belong to the same
ontological class. Therefore, a similarity criterion has been devised in order to keep
similar instances close. In this way it is possible to extend the hierarchy of the ontology
with new “classes" generated by the clustering of the instances. These additional levels
could be included in the hierarchy and then would visually produce a greater amount
of nested regions within the visualization that would help users in their exploration.

By following the city metaphor, a distinctive instance of a region is represented as its
capital. This is not an attempt at making maps more similar to the traditional geographic
ones, but a way for making more explicit what a certain region contains. Since it is a
experimental feature, the choice of the cities has been manually performed. Thus, it
would be interesting to devise a method that automatically chooses cities by exploiting
some characteristics present in the data. For instance, the most connected instance in
term of relationships defined by the RDF triples could be used as the representative city
of a region.

Regarding the level of flexibility, the approach provides (as described in Section 5.5)
the possibility of setting different configurations depending on the specific case, and
allows to move the computation offline and online according to the necessity. Moreover,
even if the approach has been mainly presented for solving the problems characterizing
the Semantic Web, as illustrated in Chapter 6, it can be applied to non-Linked Data
sources as well.

Furthermore, the map can be enriched with other features such as the thematic maps
discussed in Chapter 7. It can be seen as a base visualization on top of which other func-
tionality can be implemented. For example, the results of the execution of SPARQL
queries could be displayed by highlighting the resulting instances on the map. A fea-
ture similar to the one proposed by RelFinder (Chapter 3) could be included for showing
which are the paths between two instances.
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Chapter 8. Conclusion

8.1 Closing remarks

The main goal of the thesis was to provide an approach for visualizing a data set in its
entirety and enabling users to learn and understand how it is composed. Considering
this intention, the approach discussed in the thesis surely represents a possible solution
to the problem since, as demonstrated by the prototypes developed, the combination of
the cartographic approach with a zoom behaviour permits to visualize large amounts of
complex data in an interactive and natural way. Moreover, the choice of structuring the
process of exploration according to the Shneiderman Mantra additionally contribute to
this aim. The general structure of a data set is shown as first view with a map, then a
zoom mechanism allows to deeper explore the parts on which a user is interested in,
finally details about the tiniest resources of the map can be requested.

The approach is promising considering the prototypes developed and the results of
the evaluations performed. However, more case studies are necessary in order to further
evaluate the approach on different scenarios and additionally improve it. In conclusion,
the work performed is answering the initial goal of the thesis and it represents a nucleus
of ideas, techniques and experiments that can be used as a starting point for further
investigating the possibility of entirely representing sets of data.
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