
UNIVERSITÀ DEGLI STUDI DI TRENTO
DISI - Dipartimento di Ingegneria e Scienza dell’Informazione

Master of Science in Computer Science

Final Thesis

Spacetime: A Two Dimensions Search
and Visualisation Engine Based on

Linked Data

1st Reader: Graduant:
Marco RONCHETTI Fabio VALSECCHI

ID: 154931

Academic Year 2012/2013

Contents

1 Introduction 1

2 DBpedia 3
2.1 DBpedia Project . 3

2.1.1 What is DBpedia? . 3
2.1.2 DBpedia Knowledge Base 4
2.1.3 DBpedia Ontology . 5
2.1.4 DBpedia Knowledge Extraction Framework 6

3 Sparql Language 10
3.1 The First Sparql Query . 10
3.2 Sparql Query Forms . 12
3.3 Sparql Operators . 13
3.4 Complex Queries . 15

3.4.1 Building a complex query 15
3.4.2 Other complex queries 18

3.5 Problems And Limits . 19

4 Applications 22
4.1 gFacet . 24
4.2 LodLive . 26
4.3 Faceted Wikipedia Search . 27
4.4 Applications Comparison . 28
4.5 Other Applications . 29

5 Spacetime 31
5.1 Spacetime . 32

5.1.1 Spacetime Idea . 32
5.1.2 Spacetime categories 33
5.1.3 Use Case Diagram . 34
5.1.4 Spacetime Functionalities 36

II

Contents III

5.1.5 GUI Design . 38
5.2 Spacetime Technical Description 40

5.2.1 Architectural Structure 40
5.2.2 Timeline . 42
5.2.3 Technologies used . 44
5.2.4 Sparql queries . 45
5.2.5 Problems . 49

6 Use Cases 52
6.1 Use cases description . 52

6.1.1 Future Implementations 59

7 Conclusions 60

Bibliography I

Chapter 1

Introduction

The following thesis project can be collocated in the domain of Semantic
Web, Web of Data and Linked Data. The project has concerned the design
and development of a web application based on DBpedia that represents
one of the most interesting part of the Linked Data project. DBpedia is a
community with the aim of extracting structured information fromWikipedia
and make it available to users. Moreover they can query the structured data,
gaining more information than the one provided by Wikipedia . The problem
behind DBpedia is that there is not an usable and performant user interface
for extracting data.

The developed application, during the stage at the department of Infor-
mation Engineering and Computer Science, tries to provide a tool that allows
users to perform geo-temporal queries on the DBpedia knowledge base de-
rived fromWikipedia. The application, called Spacetime, is a two dimensions
search engine that provides a simple visualisation user interface for presenting
the geo-temporal results. This user interface follows exactly the dimensions
on which the application is designed. In fact it is constituted by a map and
a timeline that correspond respectively to the space and time dimension.

For making more attractive the application, Spacetime has been equipped
by a set of features such as heat map, time sliding animation, map aggrega-
tion, icon map customisation and map saving and loading.

Thus the aim of this thesis are following:

• Construct an application able to solve the user interface usability prob-
lem of the existing applications based on DBpedia;

• Construct a new application, di↵erent from the existing ones, that pro-
vides a possible real tool for users.

1

Chapter 1. Introduction 2

The work started with a preliminary research phase on the DBpedia com-
munity, described in Chapter 2. In particular, this first step concerned the
studying of the dynamics behind DBpedia especially regarding the mecha-
nisms of the knowledge base, the structure of the ontology and the knowledge
extraction framework.

Chapter 3 illustrates the investigation performed on the Sparql Language
that is the query language able to interrogate RDF datasets such as the one
used by DBpedia and queried by Spacetime. The chapter starts explain-
ing how the Sparql language works and which are the query forms available.
Then it includes describing the main operators provided by the language and
some step by step query construction.

Chapter 4 provides a classification of the existing applications based on DB-
pedia and describes in details the most important of them. Moreover it in-
cludes an evaluating comparison of these applications based on some specific
criteria. This comparative analysis has been performed for understanding the
strength and weakness of the evaluated applications and for subsequently us-
ing it in the Spacetime development.

Chapter 5 is the chapter dedicated to Spacetime and it illustrates the charac-
teristics of the application starting from the idea behind it. Then it continues
describing the Spacetime categories, the use case diagram, the main Space-
time functionalities, the GUI design and it finish with a technical description
related to the architectural structure, the timeline, the technologies used, the
included Sparql queries and the problems of the application.

Chapter 6 proposes some Spacetime use cases for making more clear which
are the capabilities of the application providing some of the most significant
features and researches available in Spacetime. Furthermore it includes also
a section in which some of the possible future implementation are discussed.

Chapter 2

DBpedia

2.1 DBpedia Project

2.1.1 What is DBpedia?

In this section a general and initial description of DBpedia is given for intro-
ducing this project.

DBpedia is a community e↵ort to extract structured information from
Wikipedia1 and to make this information available on the Web. DBpedia al-
lows you to ask sophisticated queries against datasets derived fromWikipedia
and to link other datasets on the Web to Wikipedia data [1]. Moreover DB-
pedia has been described by Tim Berners-Lee2 as one of the more famous
parts of the Linked Data project [9].

At first sigh you may be wondering which is the need of having a system
that extracts information from Wikipedia making it available on the Web.
This is a task already fulfilled by Wikipedia and it seems to be useless.
Rather the reason of the existence of DBpedia is that it provides to the users
more information than Wikipedia. In fact the strength of DBpedia is the
capability of answering complex user requests.

1Wikipedia is a collaboratively edited, multilingual, free Internet encyclopedia sup-
ported by the non-profit Wikimedia Foundation. Its 25 million articles, over 4.1 million in
the English Wikipedia alone, are written collaboratively by volunteers around the world.
Almost all of its articles can be edited by anyone with access to the site,[3] and it has
about 100,000 active contributors.

2Sir Timothy John ”Tim” Berners-Lee is a British computer scientist, best known as
the inventor of the World Wide Web and as an expert of the Semantic Web and Linked
Data.

3

Chapter 2. DBpedia 4

For making more clear the concept some possible user queries are listed
below:

• ”Which european countries have a capital with more than 3 million
people in which flows a river longer than 300 kilometres?”;

• ”Which bands are composed by 4 members and played prog/psych music
in Great Bretagne in the 60s?”;

• ”Which movie directors have done spy movies with Robert Redford in
the cast before 1976?”.

Taking the first example in the list, it is easily comprehensible that
Wikipedia can not provide the set of european countries that have a cap-
ital with more than 3 million people, in which flows a river longer than 300
kilometres. Though Wikipedia does not have a page that directly describes
this complex set of countries, it contains all the data required for retrieving
it. In fact Wikipedia has a page dedicated to London, Berlin, Paris and all
the other european capitals in which population and river characteristics are
normally available to users. DBpedia extracts all the information contained
in special containers, called infoboxes, from Wikipedia pages and creates a
knowledge base of entities.

Hence the advantage, that DBpedia provides to users, is that they have no
needs to navigate all the european capital pages, for assembling the interested
information, but they can ask to DBpedia to perform this costly task for
them.

The knowledge base entities are described by a globally unique identi-
fier that can be decomposed in di↵erent parts located in di↵erent locations
on the Web. Currently, the Web of interlinked data sources around DB-
pedia provides approximately 4.7 billion pieces of information and covers
domains such as geographic information, people, companies, films, music,
genes, drugs, book and scientific publications [3].

2.1.2 DBpedia Knowledge Base

The DBpedia Knowledge Base describes more than 2.6 million entities [3].
Each entity is defined by a Uniform Resource Identifier (URI) which is
described by a common pattern: http://dbpedia.org/page/Name, where
Name is taken from the corresponding Wikipedia article URL.

For instance, the Wikipedia article page http://en.wikipedia.org/

wiki/Pink_Floyd describes the entity of Pink Floyd band. DBpedia cre-
ates the corresponding URI as http://dbpedia.org/page/Pink_Floyd.

http://dbpedia.org/page/Name
http://en.wikipedia.org/wiki/Pink_Floyd
http://en.wikipedia.org/wiki/Pink_Floyd
http://dbpedia.org/page/Pink_Floyd

Chapter 2. DBpedia 5

Each entity is composed by a set of Resource Description Framework3

(RDF) triples. The DBpedia Knowledge Base is composed around 274 mil-
lion RDF triples which have been extracted from 35 di↵erent Wikipedia
language versions. A triple can be viewed as an expression in the form
Subject-Predicate-Object and it can be represented by a node-arc-node link
[8] as shown in figure 2.1. Each RDF triple represents a statement of a
relationship between the things denoted by the nodes that it links.

Figure 2.1: The graphical representation of a RDF triple.

2.1.3 DBpedia Ontology

As described in the previous section DBpedia provides a dataset of RDF
triples based on Wikipedia data. This information is represented by DBpedia
using an ontology4 manually created by the members of the community. The
ontology is composed by 359 classes and 1775 properties. The ontology is
based on the Ontology Web Language5 (OWL) and its classes are organised
in a hierarchy where ”Thing” representing the top most level. The need of
having an ontology comes from the fact that the Wikipedia infobox template
system evolved without using a central schema for describing entities and
their properties. This aspects lead to a situation in which, for instance, the
entity Person has an attribute for describing the place in which the person was
born that can be either ”birthplace” or ”placeofbirth”. DBpedia ontology
wants to centralise the equivalent property names in a unique property label.

The following example describes a portion of the RDF triples list that
compose the entity of the Pink Floyd band:

Subject : <http://dbpedia.org/resource/Pink_Floyd>

Predicate: <http://dbpedia.org/ontology/name>

3RDF is a language for representing information about resources in the World Wide
Web and it can be viewed as a directed, labeled graph containing Linked Data.

4The DBpedia ontology is available at http://mappings.dbpedia.org/server/

ontology/classes/.
5The Ontology Web Language (OWL) is the markup language for explicitly represent-

ing the meaning and the semantic of terms using vocabulary and relationships between
them.

http://mappings.dbpedia.org/server/ontology/classes/
http://mappings.dbpedia.org/server/ontology/classes/

Chapter 2. DBpedia 6

Object : "PinkFloyd"@en

Subject : <http://dbpedia.org/resource/Pink_Floyd>

Predicate: <http://dbpedia.org/ontology/hometown>

Object : <http://dbpedia.org/resource/London>

Subject : <http://dbpedia.org/resource/Pink_Floyd>

Predicate: <http://xmls.com/foaf/0.1/homepage>

Object : "http://www.pinkfloyd.com/"

The RDF triples in the example respect the subject-predicate-object ap-
proach and use the properties name, hometown and homepage for char-
acterizing the Pink Floyd band. Each of these properties corresponds to
an object that can be a literal such as ”Pink Floyd”@en, a link such as
”http://www.pinkfloyd.com/” or a reference to another entity (e.g. an-
other subject) like London.

Therefore the DBpedia knowledge base is a set of entities, identified by
URIs and described by a set of RDF triples. These aspects about the DBpe-
dia architecture respect the four principles[2] about Linked Data drawn by
Tim Berneers-Lee:

• Use URIs as names for things;

• Use HTTP URIs so that people can look up those names;

• When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL);

• Include links to other URIs. So that they can discover more things.

2.1.4 DBpedia Knowledge Extraction Framework

In this section we describe the mechanism of data extraction that DBpedia
adopts for constructing its knowledge base. As we know DBpedia retrieves
information parsing the Wikipedia pages and extracting data especially from
special containers called infoboxes. Since infoboxes contain di↵erent kind
of data, the DBpedia knowledge extraction framework provides a set of 11
extractors, one for each of the following type of information:

• Labels : the title of the WIkipedia article;

• Abstracts : a short and a long abstract for each Wikipedia articles;

Chapter 2. DBpedia 7

• Interlanguage links : the links that connect equivalent articles in di↵er-
ent languages;

• Images : links to Wikimedia Commons images;

• Redirects : the redirect strings used by Wikipedia to identify synony-
mous terms;

• Disambiguation: pages that explain the di↵erent meanings of homonyms;

• External links : links to external Web resources;

• Pagelinks : links between Wikipedia articles;

• Homepages : web links to home pages of entities such as companies and
organisation;

• Categories : the category of the article;

• Geo-coordinates : geographical coordinates are expressed using Geo Vo-
cabulary and GeoRSS.

In order to extract, store and keep update its knowledge base the DBpedia
knowledge extraction framework uses two di↵erent kind of extractions:

• Dump-based extraction: it updates the DBpedia knowledge base with
the dumps6 published monthly by the Wikimedia Foundation. This
procedure allows DBpedia to have an updated knowledge base in term
of structure since the dump provides the last version of Wikipedia struc-
ture;

• Live Extraction: it uses the Wikipedia OAI-PMH live feed that in-
stantly reports all Wikipedia changes. Using these live feeds the live
extraction can update the knowledge base with new RDF triples each
time a feed about a changed article is received. The update process
deletes old RDF triples inserting the new ones. The time lag for DB-
pedia to reflect Wikipedia changes lies between one or two minutes[3].

However the most important source of information inside a Wikipedia page
is the infobox shown in figure 2.2. This object is a table containing a list of
attribute-value pairs and it is located on the top right side of every Wikipedia
page. There are two di↵erent extraction algorithm:

6A database dump contains record of the table structure and/or the data from a
database and is usually in the form of a list of SQL statements.

Chapter 2. DBpedia 8

• Generic Infobox Extraction: it processes each infobox within aWikipedia
page creating RDF triples taking the corresponding DBpedia URI of
the Wikipedia page as subject (e.g. Berlin), the concatenation of the
namespace and the infobox attribute as predicate (e.g. http://dbpedia.
org/property/country) and the attribute value as object (e.g. Ger-
many);

• Mapped-based Infobox Extraction: it tries to solve the problem of at-
tribute name synonymous and multiple template using an ontology that
maps the 350 most used infobox templates in 170 ontology classes and
2350 attributes within these templates to 720 ontology properties.

Chapter 2. DBpedia 9

Figure 2.2: A portion of the infobox of the Berlin Wikipedia article and its
corresponding code.

Chapter 3

Sparql Language

Sparql is a query language designed specifically to query RDF databases
[6]. Since the aim of this thesis is designing and developing an application
based on DBpedia data, an important issue for our project is understand
the capabilities of the Sparql language. More precisely it is necessary to
figure out which queries the language is able to express and which results
correspond to them. This chapter describes the Sparql language in such a
way to understand its power and its expressive potentialities.

First of all, Sparql works sending queries from a client to a service, named
as Sparql endpoint, using a http connection. A Sparql endpoint is an interface
used for querying a specific RDF knowledge base associated to the endpoint.
There exists di↵erent DBpedia Sparql endpoints such as SNORQL Query
Builder 1 and Virtuoso SPARQL Query Editor 2.

3.1 The First Sparql Query

In order to start dealing with Sparql, we start from the construction of a
simple query. For understanding its composition we need the following con-
cepts:

• Basic Graph Pattern: it is a triple pattern contained in most of Sparql
queries. It is like RDF triple but each subject, predicate and object
can be substituted by a variable. As we can see in the example below,
each of the RDF terms composing the triple can be substituted by a
variable;

1http://dbpedia.org/snorql
2http://dbpedia.org/sparql

10

Chapter 3. Sparql Language 11

Subject : <http://dbpedia.org/resource/Pink_Floyd> or ?var1
Predicate: <http://dbpedia.org/ontology/hometown> or ?var2
Object : <http://dbpedia.org/resource/London> or ?var3

• Pattern Matching : given a basic graph pattern, we can state that it
matches a subgraph of RDF data when RDF terms from that subgraph
may be substituted by the variables and the result is a RDF graph
equivalent to the subgraph. For instance looking at the below basic
graph pattern, we say that it matches all RDF triples in the dataset
that have an equivalent predicate and object. Hence the set of matches
it is composed by all the resources in the dataset that have an attribute
hometown with value equal to London.

Subject : ?var1
Predicate: <http://dbpedia.org/ontology/hometown>

Object : <http://dbpedia.org/resource/London>

It is possible now to write a simple Sparql query, based on the previous ex-
ample of Pink Floyd - hometwon - London, as follows:

PREFIX : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbp : <http :// dbpedia . org / onto logy/>

SELECT ?x
WHERE {

?x dbp : hometown : London
}

The query contains two PREFIX statements for mapping labels into IRIs.
The first one maps the label ”:” to <http://dbpedia.org/resource/> and
the second one, ”dbp:” to <http://dbpedia.org/ontology/>.

Then the query is composed by a SELECT statement for selecting which
data has to be put in the results. Finally the WHERE command defines
a criteria for refining the query. Note that this criteria is exactly the basic
graph pattern previously defined. In fact it is composed following the subject-
predicate-object form. It di↵ers only for the use of the prefixes:

Subject : ?x
Predicate: dbp:hometown
Object : :London

Chapter 3. Sparql Language 12

The query result describes the set of music bands which have London as
hometown. Actually, the results include all the resources contained in the
DBpedia dataset that has a triple defined with hometown as predicate and
London as object. Some of these resources are those that belong to Band or
Music Artist category.

3.2 Sparql Query Forms

The Sparql language has four di↵erent query forms:

• SELECT: it is equivalent to the SQL SELECT and it returns a table
containing the results of the query. In particular it returns all, or a
subset of, the variables involved in a query pattern match. For instance,
the following sparql query returns a table that have as columns, the
variables ?place and ?population ignoring ?country, and as rows the
corresponding values for each query pattern match. That is, each value
of ?place and ?population that have a match with an RDF triple in the
dataset.

SELECT ? p lace ? populat ion
WHERE {

? p lace dbp : country ? country ;
dbp : popu lat ionTota l ? popu lat ion .

FILTER (? country = : I t a l y &&
? populat ion > 500000)

}

• CONSTRUCT: it returns an RDF graph, extracting a specific subset
of the dataset. The CONSTRUCT query returns an RDF graph con-
structed by substituting the variables, involved in the WHERE state-
ment, in a set of triple templates. In the example below, the RDF
graph is composed by a set of triples, defined following the triple tem-
plate ?place :pop ?population, whose RDF terms are given by pattern
matches.

CONSTRUCT { ? p lace : pop ? populat ion }
WHERE {

? p lace dbp : country ? country ;
dbp : popu lat ionTota l ? popu lat ion .

FILTER (? country = : I t a l y &&
? populat ion > 200000)

}

Chapter 3. Sparql Language 13

• ASK: it returns a boolean value (true or false) indicating whether a
query pattern matches or not. For instance the following ASK query
returns true because exists at least a pattern match. It means that it
exists at least an RDF triple in the dataset that fulfil the specifications
of the WHERE statements.

ASK WHERE {
? p lace dbp : country ? country ;

dbp : popu lat ionTota l ? popu lat ion .
FILTER (? country = : I t a l y &&

? populat ion > 200000)
}

• DESCRIBE: it returns an RDF graph that describes the resources
found. The DESCRIBE query example that follows below, returns a
description of the country property that links Rome to Italy.

DESCRIBE ?x
WHERE {

:Rome ?x : I t a l y .
}

3.3 Sparql Operators

This section is dedicated to the most important Sparql operators. These
commands are points of strength for the language and they make it more
powerful allowing the construction of complex queries. Moreover using these
operators, the query expressiveness degree increases. The following list illus-
trates each operator:

• SUBQUERY :

It is a way for embedding a query inside another one. Using subqueries
makes possible to limit the results of a query putting it inside an ex-
ternal query.

SELECT ? user ? emai l
WHERE {

? user dbp : knows : Ginevra . {
SELECT ? user
WHERE {

? user dbp :mbox ? emai l .
} } }

Chapter 3. Sparql Language 14

• UNION :

It is a function that allows to express the possibility of matching several
alternative patterns. In the following example the result of the query
is composed by the solutions that match one of the two patterns that
the UNION operators connects.

SELECT ?x
WHERE {

{ ?x rd f : type xsd : boolean }
UNION
{ ?x rd f : type xsd : i n t e g e r }

}

• OPTIONAL:

Basic queries produce results in which each solution match all the pat-
terns inside the query. The OPTIONAL operator allows to add a solu-
tion when a certain information is available, but not reject the solution
if it does not match all the patterns in the query. The queries adopt-
ing OPTIONAL operator, does not eliminate solutions for which the
optional part does not match.

For instance, the following query returns the users that have a property
name. The use of OPTIONAL allows to includes the users, that have
no mail box, in the results.

SELECT ? user ? emai l
WHERE {

? user dbp : name ?name .
OPTIONAL { ? user dbp :mbox ? emai l }

}

• IF (expression1, expression2, expression3):

It evaluates the first argument of the function, interpreting it as an
e↵ective boolean value (i.e. true or false). It returs expression2 when
the e↵ective boolean value is true and expression3 otherwise.

• rdfTerm IN (expression, ...):

It tests whether the RDF term on the left-hand side is found in the
values of the expressions list on the right-hand side, returning a boolean
value.

Similarly the NOT IN operator tests whether the RDF term is not
found in the values of the expressions list.

Chapter 3. Sparql Language 15

• Negation: MINUS and NOT EXISTS operators represent two ways
of expressing negation in Sparql, based on di↵erent approaches:

– NOT EXISTS : it is a filter expression that tests if a RDF triple
pattern does not match the entries of the dataset. The results of
a query is composed by the entries of the dataset for which does
not exist the pattern specified in the NOT EXISTS.

SELECT ⇤ {
?a ?b ? c
FILTER NOT EXISTS { ?x ?y ? z }

}

– MINUS : it is a di↵erent approach that calculates the results in
the left-hand side that are not compatible with the solutions on
the right-hand side. This function removes the solutions of the
query that match the expression in the MINUS function.

SELECT ⇤ {
? s ?p ?o
MINUS { ?x ?y ? z }

}

3.4 Complex Queries

3.4.1 Building a complex query

In this section we explain how to write more complex queries than the ones
seen in the previous sections. We take as example the user question, ”Which
bands are composed by 4 members and played prog/psych music in Great
Bretagne in the 60s?”, and we try to translate it in Sparql language. The
construction of the query proceeds step by step:

Step 1: the following query returns the set of Bands coming from the
United Kingdom. As seen in section 3.1, PREFIX statements allows to
map labels with IRIs, while SELECT and WHERE allow respectively
to define the desired data and refine them with some criteria.

PREFIX : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbp : <http :// dbpedia . org / onto logy/>
PREFIX dbprop : <http :// dbpedia . org / property/>

SELECT DISTINCT ?band

Chapter 3. Sparql Language 16

WHERE {
?band dbpprop : name ?band name ;

dbp : hometown ? c i t y .
? c i t y dbp : country : United Kingdom .

}

Step 2: this query refines the results, obtained in step 1, presenting only the
bands that starts playing in the 60s. As we can see below, the query
presents a new basic graph pattern, dbp:activeYearsStartYear ?time.
Then the FILTER operator selects only the triples with a specific value
of ?time (i.e. the date variable ?time must have a value of year, greater
and equal than 1960, and less and equal than 1970). Starting from this
step the queries avoid to include each time the prefix statements.

SELECT DISTINCT ?band
WHERE {

?band dbpprop : name ?band name ;
dbp : hometown ? c i t y ;
dbp : ac t iveYear sStar tYear ? s t ime ;
dbp : activeYearsEndYear ? e t ime ;

? c i t y dbp : country : United Kingdom .
FILTER (? e t ime >= ”1960”ˆˆ xsd : date &&

? s t ime <= ”1970”ˆˆ xsd : date)
}

Step 3: this query filters the bands that played a genre di↵erent from
psychedelic or progressive rock. Hence the result is composed by the
bands of the United Kingdom that played psych/prog rock in the 60s.

SELECT DISTINCT ?band
WHERE {

?band dbpprop : name ?band name ;
dbp : hometown ? c i t y ;
dbp : ac t iveYear sStar tYear ? s t ime ;
dbp : activeYearsEndYear ? e t ime ;
dbp : genre ? genre ;

? c i t y dbp : country : United Kingdom .
FILTER (? e t ime >= ”1960”ˆˆ xsd : date &&

? s t ime <= ”1970”ˆˆ xsd : date)
FILTER (? genre = : Psychede l i c r o ck | |

? genre = : P rog r e s s i v e r o ck)
}

Chapter 3. Sparql Language 17

Step 4: in this step we refine the query providing only the United Kingdom
bands that played psych/prog rock in the 60s and that are composed
by exactly 4 members. For expressing the query, the Sparql language
provides the aggregate function COUNT for retrieving the number of
members in each band. Then using the GROUP BY and HAVING
operators is possible to obtain the set of bands composed by 4 members.

SELECT DISTINCT ?band ((COUNT(?member) AS ? count))
WHERE {

?band dbpprop : name ?band name ;
dbp : hometown ? c i t y ;
dbp : ac t iveYear sStar tYear ? s t ime ;
dbp : activeYearsEndYear ? e t ime ;
dbp : genre ? genre ;
dbp : formerBandMember ?member .

? c i t y dbp : country : United Kingdom .
FILTER (? e t ime >= ”1960”ˆˆ xsd : date &&

? s t ime <= ”1970”ˆˆ xsd : date)
FILTER (? genre = : Psychede l i c r o ck | |

? genre = : P rog r e s s i v e r o ck)
} GROUP BY ?band

HAVING (COUNT(?member) = 4)

Step 5: this query provides the same results of the previous one filtering
the bands that contains the particular character ”%”, using the MINUS
command. This is done because the results containing this character
are doubled.

SELECT DISTINCT ?band ((COUNT(?member) AS ? count))
WHERE {

?band dbpprop : name ?band name ;
dbp : hometown ? c i t y ;
dbp : ac t iveYear sStar tYear ? s t ime ;
dbp : activeYearsEndYear ? e t ime ;
dbp : genre ? genre ;
dbp : formerBandMember ?member .

? c i t y dbp : country : United Kingdom .
FILTER (? e t ime >= ”1960”ˆˆ xsd : date &&

? s t ime <= ”1970”ˆˆ xsd : date)
FILTER (? genre = : Psychede l i c r o ck | |

? genre = : P rog r e s s i v e r o ck)
MINUS {

Chapter 3. Sparql Language 18

?band dbpprop : name ?band name
FILTER (REGEX(STR(? band) , ”%”, ” i ”))

}
} GROUP BY ?band

HAVING (COUNT(?member) = 4)

3.4.2 Other complex queries

After the step by step construction of a complex query, some other complex
queries are listed as examples:

• ”Which movie directors have done spy movies with Robert Redford in
the cast before 1976?”.

PREFIX : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbp : <http :// dbpedia . org / onto logy/>
PREFIX dbprop : <http :// dbpedia . org / property/>

SELECT DISTINCT ? di rector name ?movie
WHERE {

? d i r e c t o r dbprop : name ? d i rector name .
?movie dbp : d i r e c t o r ? d i r e c t o r ;

dbp : r e l e a s eDate ? date ;
dbp : s t a r r i n g : Robert Redford .

FILTER (? date <= ”1976”ˆˆ xsd : date)
FILTER (REGEX(STR(? d i rector name) , ” ,” , ” i ”))

}

• ”Which are the italian writer born between the 1850 and 1900 and dead
after the 1950 in a city di↵erent from the birth place?”

PREFIX : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbp : <http :// dbpedia . org / onto logy/>
PREFIX dbprop : <http :// dbpedia . org / property/>

SELECT DISTINCT ? wr i t e r
WHERE {

? wr i t e r rd f : type dbp : Writer ;
dbp : b irthDate ? birthDate ;
dbp : deathDate ?deathDate ;
dbp : b i r thP lac e ? b i r thP la c e ;
dbp : deathPlace ? deathPlace .

Chapter 3. Sparql Language 19

? b i r thP lac e dbp : country : I t a l y .
FILTER (? birthDate >= ”1850”ˆˆ xsd : date &&

? birthDate <= ”1900”ˆˆ xsd : date)
FILTER (? deathDate >= ”1950”ˆˆ xsd : date)
FILTER (? b i r thP la c e != ? deathPlace)

}

3.5 Problems And Limits

This section illustrates the problems regarding the construction of an appli-
cation that wants to map the Sparql language with an usable and performant
user interface. The following examination is focused on the limits and the
problems related to the DBpedia, in particular the ontology and the data of
DBpedia.

The result of the analysis, performed in this chapter, about the query lan-
guage shows that Sparql is a powerful instrument that allows the construction
of complex queries through its set of commands and operators, introduced in
section 3.3. However the real problem, emerging from the investigation, is the
DBpedia ontology and the data inside its datasets. In order to understand
better which are the limits behind these aspects, we divide the problems in
two categories:

Ontology limits:

This category regards the problems related to the internal structure of the
Dbpedia ontology.

• As described in chapter 2.1.3 the DBpedia ontology is composed by
359 classes and 1775 properties. Moreover, these classes have a di↵erent
internal definition that consists of a set of properties directly depending
from them. For instance, the class Person has particular properties
that describe a person like first name, surname, age, birth date, death
date, hometown and so on. While the class Organisation has other
properties that describe all the characteristics of an organisation such
as name, foundation date, hometown, founders and so on. It is clear
that a software developer that has to deal with this ontology, has also
to know exactly which are the properties of the ontology classes, if
he wants to write Sparql queries. Hence the developer requirement of
having a depth knowledge about the ontology, is the first limit that
characterises the development of an application based on DBpedia.

Chapter 3. Sparql Language 20

Investigating the ontology, its classes and its properties remain a costly
task, but it is the only way for exceeding this problem;

• Another problem is the internal composition of the ontology that ap-
pears not balanced. In fact navigating the ontology, emerges that some
classes are developed in depth rather than other ones. For instance,
taking the class Event and analysing their subclasses (i.e. Convention,
Election, FilmFestival, MilitaryConflict, SpaceMission and SportsEv-
ent), we can notice the presence of the class SpaceMission. First, you
may be wondering if this class is really needed in an ontology that
tries to summarise the huge amount of information of Wikipedia. Sec-
ond, SpaceMission class has 40 properties di↵erently from Election and
FilmFestival that have respectively 9 and 15 properties. It is now clear
the imbalance of the ontology that attributes 40 properties to a class
like SpaceMission, in despite of more significant classes such as Election
and FilmFestival.

Resource limits:

This class of problems is related to the resource data inside the Dbpedia
dataset.

• The big problem, related to the result quality of a Sparql query that
interrogates DBpedia, is the uniformity of the data. If we analyse the
resources dataset, belonging to a specific class, we can notice that not
all of them hold the entire set of properties that their own class have.

For instance, supposing we are interested in extracting from DBpedia
the movies released during 1989. The query can be easily written as
follows:

SELECT DISTINCT ?sub ? date
WHERE {

? sub rd f : type dbp : Film ;
dbp : r e l e a s eDate ? date .

FILTER (? date >= ”1989�01�01”ˆˆxsd : date &&
?date < ”1990�01�01”ˆˆxsd : date)

}

The problem is the quality of the results, because not all the movies
belonging to the Film class have the attribute releaseDate. In fact
the property releaseDate is hold from 30943 resources of the 71715

Chapter 3. Sparql Language 21

belonging to the class Film. This specific example shows that more
than half of the resources interested in the query can not be included in
the final result set. This situation is quite common inside the DBpedia
dataset and it represents a problem for Spacetime because half of the
results that the application would be provide to the user are filtered by
this limitation;

• Another problem related to the resource data of Dbpedia is the resource
class attribution. In fact sometimes happens that a resource is stored
in the dataset using a class that is the too generic for it and for which
exists a more specific subclass suitable for it.

For instance, taking the Pink Floyd music band, we notice that its class
is Organisation that is the parent class of Band. It would been better
to classify the Pink Floyd resource as a Band and not as a generic
Organisation. This problem engraves the query results quality because
if a query is written for extracting a set of resources belonging to a
certain class, the resources classified using a wrong class will be not
included in the final result set of the query.

Chapter 4

Applications

The challenge of exploiting the vast amount of DBpedia information is the
purpose of each application that is interested in using DBpedia data. DB-
pedia datasets contain a huge amount of knowledge that regards everything
that can be thought. In fact this information are taken from Wikipedia pages
that host a wide range of topics related to literature, music, cinema, history,
geography, biology, computer science, technology and so on. Paradoxically
the problem of constructing a user interface, that is capable to make users
able to ask complex questions like ”Which european countries have a capi-
tal with more than 3 million people in which flows a river longer than 300
kilometres?”, is the quantity of the data. In fact managing this enormous
amount of information, makes very di�cult the creation of a system able to
handle it. Even if DBpedia has built a ”lighter” ontology (see section 2.1.3)
for classificating data using classes and properties, the problem still remain
extremely di�cult. Several approaches to the problem have been developed,
during the last years, by di↵erent companies but this issue still remains open.

This chapter describes the state of the art of the applications based on
the structured knowledge of DBpedia, illustrating the di↵erent approaches for
accessing data. Since applications provide di↵erent methodologies to access
the data, the following classification provides a list of techniques, for retriev-
ing data from DBpedia, ordered from basic procedures to more sophisticated
systems.

The first two approaches for accessing DBpedia data are not real applica-
tions but they are important for understanding the following classification:

• The most basic ”application” is described by a user that download1 the

1http://wiki.dbpedia.org/Downloads

22

Chapter 4. Applications 23

DBpedia dataset and browses through it for looking at RDF triples.
The problem of this approach is that it is improbable considering the
amount of datasets and the amount of megabytes of data contained
in them. Moreover, using this method, it is not possible to connect
di↵erent resources for obtaining meaningful information;

• A more high-level approach but not suitable to be used by normal
users is the execution of SPARQL queries for interrogating the DBpe-
dia dataset. The problem of this method is that users require a deep
knowledge of the dataset and its properties in order to be able to write
queries. This is a task even di�cult for the experts of the DBpedia
ontology considering the size of the ontology and the number of its
properties. The main query interfaces are SNORQL Query Builder 2

and the Virtuoso SPARQL Query Editor 3 and they both interrogate
DBpedia using the SPARQL query language. Moreover a good knowl-
edge of this language is required for writing queries over DBpedia.

There exist more powerful and usable methods, that are more similar to
normal search engines that takes care about their user interface.

• Entity Search, Find, and Explore by OpenLink Virtuoso4:
It is a tool for navigating DBpedia data using three di↵erent kind of
research. It is possible to perform research starting from a keyword,
an URI or a label. The text search requires the insertion of a text
pattern to look for. Then a finder shows a list of entities with the text
occurring in any literal property value or label. The entity URI lookup
is used inserting entity URI that are recognised by the autocomplete
feature of the tool. This simple text search is better than the previous
approaches but it is not able to exploit the huge amount of knowledge
contained in DBpedia dataset and to make available the possibility of
asking complex queries;

• gFacet5:
gFacet is a browser for the Web of data that adopts a particular
approach that combines graph-based and facet-based approaches [7].
GFacet represents RDF triples using a graph where nodes are RDF
subjects or objects and edges are RDF predicates;

2http://dbpedia.org/snorql/
3http://dbpedia.org/sparql
4http://dbpedia.org/fct/
5http://www.visualdataweb.org/gfacet.php

Chapter 4. Applications 24

• LodLive6:
LodLive is a graph-based linked open data live browser. It is a navigator
of RDF resources based on SPARQL endpoints. It represents data
using a graph-based approach that allows the representation of relations
between concepts. It provides di↵erent kind of user visualisation such as
textual data, images, links to additional resources and geo-localisation
on map. LodLive makes the users able to explore a linked dataset
moving from one concept to another by browsing a graph;

• Faceted Wikipedia Search:
It is a research system based on the faceted search paradigm [5]. Users
can perform their research combining text search with additional re-
striction properties called facets. For instance, taking the european
capital example of section 2.1.1, a facet of the entity ”city” could be
”population amount” while for the entity ”river” the ”length”. Faceted
Wikipedia Search provides facets for addressing user researches in the
correct direction filtering undesired results.

4.1 gFacet

It is an application based on graph and facet approach. The user operations
for finding information are the following:

• Initially the application provides a textual search from which users
express a context for the research.
Supposing a user insert the keyword ”italian”;

• After a search is performed the application visualises a list of classes
related to the textual insertion. Each class has the number of objects
that contains (i.e. Italian films, 2345 objects)
The application, for ”italian” keyword, provides a list that contains
Italian singers, Italian footballers, Italian films, Italian actors and so
on;

• The user chooses the interested class.
Supposing the user chooses the class of Italian actors;

• Once a class is selected, the list of object contained in the class, and
ordered in alphabetical order, is presented to the user.
The list of italian actors is listed in the appropriate panel: Alberto
Sordi, Anita Caprioli, Antonio Albanese...;

6http://en.lodlive.it/

Chapter 4. Applications 25

• After that it is possible to connect the class chosen to other classes of
objects, through class relations.
The user selects the birth place relation associated with the class of
Roman tows and cities in Italy as shown in figure 4.1;

Figure 4.1: A relation, between two class of objects, expressible using gFacet.

• Finally, once at least a relation is established, it is possible to select an
object from a class for obtaining an updated list of the other classes.
In this way the application shows the result of the relation utilisation.
Selecting Genova, the application updates the list of actors, presenting
only the actors with birth place in Genova, as shown in figure 4.2;

Figure 4.2: The result of the birth place relation for the italian city of Genova.

• This process can be performed many times creating a graph where
nodes are classes of objects (i.e., Italian actors) and edges relation
between classes of objects (i.e., birth place).

Chapter 4. Applications 26

4.2 LodLive

LodLive is a graph-based linked open data live browser. It is a navigator
of RDF resources based on SPARQL endpoints. The application proposes
three di↵erent kind of research:

• Simple search: it is a textual research that starts from a user insertion
of a keyword for finding an URI;

• URI-based search: the user holding a URI can start the graph browsing
inserting the URI;

• Endpoint search: the user, once has chosen an endpoint and a class
belonging to it, can insert a keyword.

Once the search is terminated the application shows the searched concept as
a circle surrounded by many smaller ones that represent concept properties.
Expanding the smaller circles is possible to create a graph that connects
di↵erent concepts.

Figure 4.3: A portion of LodLive application that shows the graph of concepts
and the additional information right panel.

Chapter 4. Applications 27

The figure 4.3 shows the LodLive graph applied to an example started by
the simple search of ”Milan” as keyword. The graph contains the concept of
the city of Milan and other concepts linked to it such as Italy and Giuliano
Pisapia that are respectively the country and the mayor of the city. The edges
of the graph represents the relations between concepts for which LodLive is
able to calculate the inverse relations.

For each concept, LodLive allows user to open a map panel for geolocaliz-
ing concepts, an image panel for looking at concept images and an additional
information panel for detailed information (See Figure 4.3).

LodLive is composed of a J-Query plug-in (named LodLive core), a JSON
configuration map (named LodLive-profile), an HTML5 page, some images
and some other public J-Query plug-ins [4].

4.3 Faceted Wikipedia Search

The Faceted Wikipedia Search is a di↵erent way of searching information.
The project totally relies on DBpedia Knowledge base from which retrieve
data. The application tries to provides to the users a tool for expressing and
asking complex questions. For achieving its aim the the Faceted Wikipedia
Search adopts a faceted search paradigm. This approach enables users to
compose complex questions step by step using facets. A facet is a compo-
nent of the user interface for refining user researches. Facets exploit the
properties of an entity for making more precise the result of a user question.
For instance, as shown in figure 4.4, the facets of an entity river are has
mouth at, length and watershed. These three facets are only a little part of
the properties set, but they can improve the result of the user questions.

The figure 4.4 shows all the components in the user interface of the ap-
plication:

• Textual Search: it is a simple text search;

• Facets Panel : it displays the most relevant facets used by users;

• Filters Panel : it visualises the facets used by user and allows to remove
them;

• Results Panel : it lists the results of a user research.

FacetedWikipedia Search was online for several years at http://dbpedia.
neofonie.de, but is now o✏ine because Neofonie has stopped to maintain

http://dbpedia.neofonie.de
http://dbpedia.neofonie.de

Chapter 4. Applications 28

the server. Moreover there are currently no concrete plans of getting the ap-
plication online again. Faceted Wikipedia Search is now a dead application
but it has one of the most interesting approach among the application based
on DBpedia.

Figure 4.4: Screen shot of Wikipedia Faceted Search showing textual search
in area 1, facets in area 2, filter panels in area 3 and the results in area 4.

4.4 Applications Comparison

This section presents a comparison between the main applications illustrated
in the previous section using several criteria for evaluating them. The appli-
cation chosen for this comparative analysis are gFacet, LodLive and Faceted
Wikipedia Search (FWS). The parameters chosen for the evaluation are the
following:

Chapter 4. Applications 29

• Queries Complexity: it defines the complexity expressible using a
specific application;

• Interface Usability: it describes the usability grade that a certain
application provides to users;

• User Typology: it defines the typology of user that can utilise a
specific application;

• Technologies used: it lists the technologies adopted for the imple-
mentation of a certain application.

The table 4.1 shows, for each criteria, the corresponding value for each ap-
plication.

gFacet LodLive FWS

Queries Complexity quite complex not complex complex

Interface Usability not so good not so good good

User Typology expert user expert user normal user

Technologies Used Flash JQuery, HTML5 ?

Table 4.1: The summary of the criteria analysis of the DBpedia based appli-
cation.

The result of the comparative research, about the most important ap-
plication based on DBpedia, shows that LodLive is the most innovative ap-
plication in term of technologies used while GFacet allow to express quite
complex query. Finally Faceted Wikipedia Search can represents complex
queries, providing a good usability that allows to normal users to utilise the
application. Unfortunately, Faceted Wikipedia Search, that appears to be
the most interesting Dbpedia based application, is no longer available on the
web.

4.5 Other Applications

The complexity of constructing an user interface able to exploit the huge
amount of information contained in the DBpedia knowledge base suggests to

Chapter 4. Applications 30

develop more restricted application focused on smaller contexts. For instance
there are application like:

• DayLikeToday7: it is a web application that allows to navigate,
through a time line, all the events happened in a certain day of the
year;

• AboutThisDay8: it is a tool for finding events, related to several
categories (i.e. media, war, literature, politics, business, art, religion,
science, society and sport), happened in a specific day of the years;

7http://el.dbpedia.org/apps/DayLikeToday/
8http://www.aboutthisday.com/

Chapter 5

Spacetime

This chapter treats the description of Spacetime, the application developed
for this thesis project. The name of the application wants to highlight the
fact that it is based on two dimensions, the time and the space. Spacetime
can be defined as a two dimensions search and visualisation engine based on
the DBpedia knowledge base.

Spacetime tries to exploit the huge amount of data contained in the DB-
pedia dataset. Since DBpedia contains an enormous amount of information,
it is di�cult to entirely manage it. Spacetime uses a subset of this database
taking only the resources that have a spatial and a temporal indication in
their attributes. This choice allows to address the focus of the application
only on a specific and more restricted set of data.

Spacetime provides a search engine for identifying, in a specific space area
and in a certain range of time, entities belonging to the categories taken from
the DBpedia ontology. Part of these categories are the following: organisa-
tions, bands, companies, sport teams, persons, architects, writers, journalists,
politicians, events, elections, film and music festivals, military conflicts, sport
events, architectural structures, historic places, monuments, natural places,
works, movies, books, softwares, paintings . . .

The following treatment is divided in two di↵erent sections: the first one
is a description of the application from the point of view of the user while
the second one is a technical analysis of the application from the point of
view of the developer.

31

Chapter 5. Spacetime 32

5.1 Spacetime

This section is dedicated to Spacetime. In particular it explains which is
the idea behind the application, which are its functionalities and how the
application works.

5.1.1 Spacetime Idea

The idea behind Spacetime can be simply found inside its name. It is based
on two main concepts: space and time. Two dimensions that are the base of
a search engine that takes its knowledge from the DBpedia dataset. As said
in the previous chapters the big challenge, of managing the huge amount
of data hosted in DBpedia, is find a method for providing the data in a
simple and clear way to the user. The real problem is that the DBpedia
data are organised in an ontology (described in chapter 2.1.3) composed
by classes defined using a complex set of attributes, that are not easy to
handle. Then, constructing an application for retrieving information from
this ontology become very di�cult, since it is required to know exactly which
properties correspond to each class in the ontology.

The data extraction operation performed by Spacetime is di↵erent from
the normal techniques adopted by the existing application based on DBpe-
dia. Spacetime takes all the resources in the DBpedia dataset that have at
least one spatial and one temporal indication without considering the other
attributes of the resources. This approach allows to overcome the ontology
complexity problem and to succeed in extracting useful information for the
application.

The resulting application is a search engine that provides a set of DBpedia
resources mapped on a Google map and on a timeline. The researches can
be e↵ected using three parameters:

• Space: the space parameter can be a country, a continent or the entire
globe;

• Time: the time parameter is a range of time defined by two dates;

• Spacetime category: this parameter defines the category of the DB-
pedia resources.

In the next section the Spacetime categories are described for understand-
ing what is the third parameter on which the application is based.

Chapter 5. Spacetime 33

5.1.2 Spacetime categories

The Spacetime categories are a subset of the hierarchical structure of the
DBpedia ontology. They are composed by five macro categories: Organisa-
tion, Person, Event, Place and Work. In order to understand better which
subcategories compose these macro categories, we list part of them below:

• Organisation: this class contains Band, Broadcaster, Clerical Order,
Comedy group, Company, Government agency, Military unit, Political
party, Sports league, Sports team, . . .

• Person: this class contains Architect, Artist, Athlete, Economist,
Journalist, Monarch, Philosopher, Politician, Religious, Scientist, Sports
manager, . . .

• Event: this class contains Convention, Election, Film festival, Military
conflict, Music festival, Space mission, Sport events, . . .

• Place: this class contains Architectural place, Historic place, Monu-
ment, Natural place, Populated place, Protected area, Ski area, . . .

• Work: this class contains Artwork, Cartoon, Film, Musical, Album,
Single, Song, Software, Television show, Website, Written Work, . . .

The choice of the macro categories has been performed following two
criteria:

• A macro category must have a category of resources that the user is
interested in;

• A macro category must have a considerable amount of resources with
a spatial and temporal indication in their attributes for allowing the
user research over them.

Regarding the second criteria, an examination of the number of resources
has been made for perceiving the amount of information that the selected
categories would have contained. The following table shows for each of the
macro categories chosen the number of resources, with a spatial and temporal
indication, contained in it.

As table 5.1 shows, all the categories have a considerable amount of re-
sources.

Chapter 5. Spacetime 34

N of resources

Organisation 29158

Person 5265804

Event 77613

Place 225161

Work 125107

Table 5.1: The number of resources with a spatial and temporal indication
for each Spacetime categories.

5.1.3 Use Case Diagram

The use case diagram in figure 5.1 represents the user interactions with Space-
time. It depicts only one kind of actor that is User that represents the
application utiliser. There are five di↵erent use cases that are the following:

• Perform a research: the research operation requires the insertion of
three parameters by the user: a spatial indication (i.e. a country, a
continent or the entire earth), a temporal indication (i.e. a range of
time defined by two dates) and a Spacetime category (i.e. a category
between Organisation, Person, Event, Place, Species, Work or one of
their subclasses). This use case provides to the user a set of DBpe-
dia results mapped on a Google maps and at the same time ordered
on a timeline. Moreover the user can activate additional features, de-
scribed in details in the next section, such as time sliding animation,
heat map visualisation, map aggression, numbered researches and icon
customisation;

• Save a map: the saving operation requires the insertion of a text string
corresponding to the name of the map file. Then it is required also to
select a file format for determining the the output format of the map.
This operation is available only after the user has performed a research
or has loaded a map. In general the operation can be done only when
the Google map is not empty;

Chapter 5. Spacetime 35

• Load a map: the loading operation requires that the user must select
a Spacetime map file from its local machine. After a map is loaded is
not allowed to perform the operation another time;

• Modify a map: the process of modifying a map consists of some cus-
tomisation operations such as the events remotion and the change of
the icon of the events mapped.

• Consult a map: this use case allows the user to navigate a Google map
populated with a set of clickable markers. The on click event create an
info window popup containing the abstract of the resource clicked in
di↵erent languages, and two resource links to Wikipedia and DBpedia
for additional and more specific information.

Figure 5.1: The use case diagram of Spacetime.

Chapter 5. Spacetime 36

5.1.4 Spacetime Functionalities

In the previous section the use case diagram provides a first view of the
functionalities of the application. In this section instead some specific aspects
about them are analysed for understanding the potentialities of Spacetime.
In particular the additional features of the application and the saving and
loading operations will be discussed.

Spacetime data visualisation

An important set of Spacetime functions are the di↵erent kind of data vi-
sualisation, that allow to represents the results set of a research in di↵erent
way. Spacetime provides four di↵erent data visualisation:

• Density visualisation: The first Spacetime feature, called density
visualisation, provides a heat map that is a map that depicts the density
of the data following the geographical concentration of the resources.
When this feature is enabled, a coloured overlay appears on the map,
indicating the high density areas with red and the low density areas
with blue. The colours in between red and blue are defined by a colour
gradient that is a set of RGB colours.

• Time Sliding animation: This feature allows the user to create a
time animation in which the events appear sequentially on the map,
following a temporal order. This feature becomes very useful if com-
bined with the density visualisation function, because it provides an
animation in which the heat map changes during the time providing
the evolution of the events.

• Map aggregation: The map aggregation provides a very powerful fea-
ture because it allows the creation of more complex maps that include
di↵erent researches based on di↵erent parameters. For instance this
function allows to create maps that contains researches performed on
di↵erent countries, di↵erent time ranges or di↵erent categories. Thus
it is possible to create maps containing resources from Writer and
Book category, Athletes and Sports events, Elections performed in Italy,
France and Germany or Music festival placed in United Kingdom and
United States of America.

Moreover the possibility of modifying the icon markers of the resources,
gives more power to the map in term of meaning and clearness. This
feature can be used with two loaded map, a loaded map and a new
research and viceversa.

Chapter 5. Spacetime 37

• Numbered research: This function is thought for helping users in
numbering results. In fact, normally when a research is performed
without the use of this feature, the results are shown on the map with
a generic marker. This default indicator tells no information to the user
about the temporal position on the timeline. The numbered research
proposes a more significant map composed by markers labeled with
numbered icons that provides an additional temporal information on
the map. An example of this functionality is described in chapter 6.

• Icon modifier: The last feature is the icon modifier that allows user
to create more meaningful maps. This function provides several icons
divided in eight categories: colours, numbers, letters, people, culture,
events, transportation and sports. The user, before performing a re-
search, can chose one icon that becomes the default icon marker for
the results of the research on the map. This feature becomes very use-
ful when it is used in common with the aggregation function described
above. In fact, collectively using these two features, allows to distin-
guish di↵erent researches on the same map just by using di↵erent icons
that di↵erentiate the resources of a research from the the resources of
the other. An example of this functionality is described in chapter 6.

Saving and Loading Map

We analyse now the saving and loading map operations because they have
an important role in the application. During the utilisation of Spacetime,
these two functionalities become very useful in some situations. We analyse
them below:

• As described in section 5.2.5, the Sparql endpoint is a point of fail-
ure because it connects Spacetime to the DBpedia dataset. Then if
this interface has a problem, Spacetime can not retrieve the informa-
tion for the user. Hence supposing the Sparql endpoint is not working,
the Spacetime research function is not available because it can not re-
trieve the information passing through the endpoint. In this particular
case the saving and loading operations become extremely important
and useful because they are independent from the DBpedia endpoint.
Then, they can provide to the user its maps even if, the Sparql end-
point service is not working. In general these two operations allows the
user to load their saved maps in Spacetime and work on them without
performing a second time the research corresponding to the saved map.
The aim of the saving and loading operations is to provide a faster way
to retrieve maps avoiding the Sparql endpoint execution time.

Chapter 5. Spacetime 38

• Another situation in which these two functions become very useful is
when the user wants to perform a research with a lot of results. This
researches take a considerable long time to be executed. Then it is
convenient for the user to save the map after the first execution and
retrieve it, in less time, in a second time using the loading process.

• The saving and loading operations can be very helpful for using the
aggregation feature described in the previous section. In fact the user
can save two di↵erent maps, loads and aggregates them in a second
moment without repeating the two researches. Moreover a single stored
map can be loaded on Spacetime and expanded, just by aggregating it
with a new Spacetime research.

5.1.5 GUI Design

This section provides a description of the graphical user interface (GUI) of
Spacetime. The GUI design has taken into account two main aspects for
building the user interface:

• Input mechanisms: they regard all the web controls (e.g. text box,
check box, buttons, calendar fields, . . .) that the user can use for insert
data;

• Output mechanism: they regard all visual output and animation
that the application provides to the user.

Taking care about these two important aspects, the application has been
designed for trying to be:

• Graphical nice to the eye;

• Intuitive and simple to use;

• E↵ort minimiser.

The Spacetime interface is composed by three main components:

• A control panel for performing research, saving and loading maps;

• Amap for visualising on the space the events found through a research;

• A timeline for visualising during the time the events found through a
research.

Chapter 5. Spacetime 39

The control panel is the most important part of the user interface because
it contains all the components for performing a research, activating features
and saving/loading maps. As we can see from figure 5.2 the control panel
it is tab-based menu composed by three tabs: the first is used for searching
data, the second for the saving and loading map operations and the third for
accessing to the Spacetime demo area.

The search tab has been designed in four di↵erent area. Three of them
are used for constructing a research and the last one is a features bar used
for activating the available features. From the point of view of the user the
research construction consist of three steps:

Step 1: select a DBpedia category from the list;

Step 2: insert a country or a continent and select an entry from the space
filter;

Step 3: insert a two date values from the calendars and select an entry
from the time filter.

After these three steps the research construction is finished and the user
can activate one or more functions from the features bar. For making more
clear the data insertion, the search tab is divided in three area denoted by a
sequential number that corresponds exactly to the three steps just described.

Figure 5.2: A screenshot of Spacetime showing the map and the control
panel.

Spacetime has been designed with a structure that leave most of the screen
size to the map and the timeline. This choice has been done for facilitate the

Chapter 5. Spacetime 40

Figure 5.3: A screenshot of Spacetime showing the results set on the map
and the timeline.

user in the consultation of the Spacetime map and timeline. In fact when a
user performs a research or loads a map, the smart panel, shown on the left
in figure 5.2, disappears for leaving the entire space of the screen to the map
and the timeline as we can se in figure 5.3.

5.2 Spacetime Technical Description

This section, despite of the previous one, is more technical in fact it de-
scribes the Spacetime implementation details, illustrating the components of
the architectural structure of the application, the timeline component, the
technologies used for the development process, the sparql queries adopted for
retrieving the data from Dbpedia and finally the problems of Spacetime.

5.2.1 Architectural Structure

This section is dedicated to the architectural structure of Spacetime. It
describes each part that compose the application that is mainly constituted
by five components:

• DBpedia: it is the knowledge base from which Spacetime extracts
data for providing them to the user;

• Sparql endpoint: it is an interface that connects Spacetime to DB-
pedia. This web service is responsible of the Sparql queries execution.

Chapter 5. Spacetime 41

• Google Maps: it allows to render the data retrieved from DBpedia
on a map, showing a spatial representation of them to the user;

• Javascript: it is the core of Spacetime and contains its application
logic. It is responsible of all the interactions between the application
and the other components;

• HTML: it defines the graphical structure of the Spacetime and the
dynamic content of the application.

The Javascript core functions, as shown in figure 5.4, is the central com-
ponent of Spacetime and it manages the interactions with all the other ap-
plication components. The following analysis illustrates, in details, each of
this interaction for making more clear how Spacetime works: (For a better
understanding of the following analysis is suggested to look at figure 5.4)

1. Javascript - Sparql: The Spacetime data retrieving is performed
extracting data from DBpedia through a Sparql endpoint that is an
interface used for querying a specific RDF knowledge base associated
to the endpoint. Normally when the application retrieves data, it con-
structs a sparql query, starting from the user input, and it sends it to
the sparql endpoint. Hence, Spacetime delegates the sparql endpoint
to extract the requested information from DBpedia.

2. Javascript - HTML: This kind of interactions are related to the user
requests that start from the html application page. In fact each of the
request that a user performs such as a research, a map saving, a map
loading or a content change, starts from the Spacetime html page and
then it is processed by a specific javascript function.

3. Javascript - Google Maps: Another important category is the one
that involved interactions starting from the Google map. These interac-
tions concern for instance the rendering of the retrieved DBpedia data,
the remotion or the editing of a Google marker and the request of the
information related to a specific Spacetime events. These interactions
are important because they form, in common with the interactions of
the previous point, the set of user requests.

Chapter 5. Spacetime 42

Figure 5.4: The architectural structure of Spacetime.

5.2.2 Timeline

The timeline and the Google map are the most important logical component
of the application. They are the base of Spacetime, in fact the Google map
represents the space since it provides the spatial dimension while the time-
line defines the time dimension. Even if the timeline is a very important
component of the application is not mentioned in the architectural structure
described in section 5.2.1 di↵erently from the map. This because the timeline
is part of the HTML block. This section propose a description of most used
timelines found on the web and shows the Spacetime timeline.

The best timelines found on the web are the following:

• TimelineJS1: the timeline in figure 5.5 is an open-source tool that
enables to build interactive timelines that contain media from di↵erent
sources and it is built in support for Twitter, Flickr, Google Maps,
YouTube, Vimeo, Vine, Dailymotion, Wikipedia and SoundCloud.

• Timeliner.js2: it is a simple, interactive, historical timeline built using
HTML, CSS and JQuery. Figure 5.6 shows a screenshot of the timeline.

• Lateral On-Scroll Sliding3: it is a vertical timeline that can embed
links to web site resources. It works on a vertical scrolling and uses
animation for the time events appearance implemented using JQuery.
Figure 5.7 shows a screenshot of the timeline.

1http://timeline.verite.co/
2http://www.technotarek.com/timeliner/
3http://tympanus.net/Tutorials/LateralOnScrollSliding/

http://timeline.verite.co/
http://www.technotarek.com/timeliner/
http://tympanus.net/Tutorials/LateralOnScrollSliding/

Chapter 5. Spacetime 43

Figure 5.5: A screenshot of the TimelineJS.

Figure 5.6: A screenshot of the Timeline.js.

Figure 5.7: A screen shot of the Lateral On-Scroll Sliding.

Chapter 5. Spacetime 44

The problem of using the above timelines is that they are hardly em-
beddable inside the structure of Spacetime. In fact the timelines seen in the
previous classification are very large in term of dimensions and they are made
for contains a lot of data such images, videos and long text.

Hence Spacetime adopts a more compact timeline with a minimal design
look. It is built using HTML, CSS and JQuery. Building an ad-hoc timeline,
as the one shown in figure 5.8, instead of using an existing plug-in, allows to
adapt the timeline to the application in the best way. In fact the Spacetime
timeline has specific requirements:

• Simple and intuitive for the user;

• It must be dimensionally compact and able to contain a considerable
high amount of events;

• It must show a popup containing the space and time information of an
events;

• It must contains only the years and months for which exists at least an
event.

Figure 5.8: A screen shot of the Spacetime timeline.

5.2.3 Technologies used

The technologies utilised in the implementation of Spacetime are the follow-
ing:

• Sparql Query Language for RDF: the query language is used in
Spacetime for interrogating the DBpedia dataset through a Sparql end-
point that takes as input a Sparql query and returns as output a JSON
file containing the query results;

Chapter 5. Spacetime 45

• Google Maps JavaScript API v3: the Google Maps API are used
for populating a map with the data contained in the JSON file returned
by the Sparql endpoint. Moreover the Google Maps has been very im-
portant in the implementation of some additional feature of Spacetime.
In fact these API allows to populate the map as an heat map and also
to easily change the marker icons of the results on the map;

• Javascript and JQuery library: the scripting language and its li-
brary define a set of functions that are the core of the application.
Javascript represents the core of Spacetime. In particular the JQuery
library allows the insertion of animation inside the application;

• Asynchronous JavaScript and XML (AJAX): this technique is
very important because permits to send asynchronous request to the
Sparql endpoint for retrieving the data requested by the user;

• JavaScript Object Notation (JSON): this text format is handled
by the javascript functions for managing the results of a certain Sparql
query and for the map saving and loading operations;

• Cascading Style Sheets (CSS): the style sheets language is used for
designing and implementing the graphical aspect of Spacetime;

• HyperText Markup Language 5 (HTML5): the markup language
is used for developing certain part of the application such as the map
saving operation, implemented using the Blob object available only
using HTML5. Moreover the language allows to insert rounded corners
using the border-radius CSS property;

• HTML: the markup language is used for defining the structure of the
application pages.

5.2.4 Sparql queries

This section describes which are the Sparql queries embedded inside the code
of the application for retrieving the data corresponding to the user requests.
We can separate the queries in three main di↵erent groups:

• Filter queries: these queries provide the data for the space and time
filters in the user interface of the application. These two filters, allows
the user to select an attribute inside a set of properties for refining
their research. For instance, if a user is performing a research on the
Companies category, the space filter is composed by a list of attributes

Chapter 5. Spacetime 46

such as city, country or foundation place of a certain company. The time
filter instead provides a list of properties like founding date, extinction
date or opening date.

The following query is used for building the time filter. It extracts
the labels of the DBpedia resources of a specific category, that have
an attribute of type xsd:date. As we can see from the code, in the
SELECT statement there are two elements: the ?label of each attribute
and a count expression (count(?label) as ?cont). This expression is used
for calculating the occurrences of each ?label and then ordering them
according to a descending order.

PREFIX dbp : <http :// dbpedia . org / onto logy/>
PREFIX rd f : <http ://www.w3 . org /1999/02/22� rdf�syntax�ns#>
PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf�schema#>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT DISTINCT ? l a b e l (count (? l a b e l) as ? cont)
WHERE {

? event rd f : type dbp : Category ;
? pred ?x .

? pred r d f s : range xsd : date ;
r d f s : l a b e l ? l a b e l .

FILTER(langMatches (lang (? l a b e l) , ”EN”))
}
ORDER BY DESC(? cont)

The following query is used for building the space filter and it extracts
the labels of the DBpedia resources of a specific category, that have an
attribute with the following characteristics: it is a DBpedia resource
and it has a correspondence in latitude and longitude in the Basic
Geo (WGS84 lat/long) Vocabulary. Hence the query is finding all the
attribute labels that represents a spatial indication.

PREFIX dbp : <http :// dbpedia . org / onto logy/>
PREFIX rd f : <http ://www.w3 . org /1999/02/22� rdf�syntax�ns#>
PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf�schema#>
SELECT DISTINCT ? l a b e l (count (? sub) as ? cont)
WHERE {

? sub rd f : type dbp : Category ;
? p r ed p la c e ? p lace .

? p r ed p la c e r d f s : range ? p l a c e type ;
r d f s : l a b e l ? l a b e l .

? p l a c e type r d f s : subClassOf⇤ dbp : Place .

Chapter 5. Spacetime 47

FILTER(langMatches (lang (? l a b e l) , ”EN”))
}
ORDER BY DESC(? cont)

• Research queries: these queries are the most important in the ap-
plication because they retrieve the data related to the user researches.
The queries are built taking the user input: a Spacetime category, a
range of time composed by two dates and a spatial indication such as
a country, a continent or the entire earth. The following query shows
how to retrieve the resources of the Person category that are born in
Europe between the 1960 and 1970.

PREFIX dbp : <http :// dbpedia . org / onto logy/>
PREFIX rd f : <http ://www.w3 . org /1999/02/22� rdf�syntax�ns#>
PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf�schema#>
PREFIX wgs : <http ://www.w3 . org /2003/01/ geo/wgs84 pos#>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT DISTINCT ? l a b e l ? sub ? date ? p lace ? l a t ? lon
WHERE {
? sub rd f : type dbp : Person ;

r d f s : l a b e l ? l a b e l ;
? p r ed p la c e ? p lace ;
dbp : b irthDate ? date ;
dbp : b i r thP lac e ? p lace .

? p lace rd f : type ? c l a s s ;
wgs : l a t ? l a t ;
wgs : long ? lon .

? c l a s s r d f s : subClassOf⇤ dbp : PopulatedPlace .
FILTER (? date >= ’1960�01�01 ’ˆˆxsd : date &&

?date <= ”1970�01�01”ˆˆxsd : date)
FILTER (? l a t >= ”27.6363”ˆˆ xsd : f l o a t &&

? l a t <= ”81.0088”ˆˆ xsd : f l o a t &&
? lon <= ”39.8693”ˆˆ xsd : f l o a t &&
? lon >= ”�31.2660”ˆˆ xsd : f l o a t)

FILTER (langMatches (lang (? l a b e l) , ”EN”))
}
ORDER BY ASC(? date)

As we can see in the above query, the code contains a filter with the
dates 1960-01-01 and 1970-01-01 but it does not contain Europe. In
fact for specifying a certain spatial area we used the bounding box
technique. This method associates two values of latitude and two values

Chapter 5. Spacetime 48

of longitude to each country or continent. These coordinates define an
area that encloses a country or continent. Hence the second filter in
the above query selects only the resources that are inside this area.

• Resource queries: these queries are needed for retrieving the infor-
mation related to a single resource. This data are composed by the
abstract of the resource and the list of the language in which the ab-
stract is available for that specific resource.

The following query is used for recovering the abstract of the city of
Berlin but it can be used for any resource in the DBpedia dataset
just by substituting Berlin with the corresponding name of the desired
resource.

PREFIX : <http :// dbpedia . org / r e s ou r c e/>
SELECT ? abs t r a c t
WHERE {

<http :// dbpedia . org / r e s ou r c e /Ber l in>
<http :// dbpedia . org / onto logy / abst ract>
? ab s t r a c t .
FILTER (langMatches (lang (? ab s t r a c t) , ”EN”))

}

This query instead return the list of languages in which the abstract of
the city of Berlin is available.

SELECT DISTINCT lang (? ab s t r a c t) as ? lang
WHERE {

<http :// dbpedia . org / r e s ou r c e /Ber l in>
<http :// dbpedia . org / onto logy / abst ract>
? ab s t r a c t .

}

As we can see from the code the query is very simple and it uses the lang
operator for extracting only the language of each abstract associated
to a specific DBpedia resource.

Chapter 5. Spacetime 49

5.2.5 Problems

This section explains which are the problems, in term of performance, and
the limits of Spacetime.

Bounding box

The problem related to the bounding box is it a problem that a↵ects the
performance of Spacetime, in particular the quality of the results that it pro-
poses to the users. In fact the bounding box technique is used for filtering the
results of a Sparql query and obtaining a set of resources that belong to the
same country or continent. First of all, a bounding box is composed by two
latitude values and two longitude values. The intersection of these four values
describes four geographical points that define a rectangular area that con-
tains a certain country or continent. For instance, as we can see from figure
5.9, Italy is contained in the area defined by the following values of latitude
and longitude: +47�5025.95”,+6�37012.62”,+36�3902.98”,+18�30038.99”.

Figure 5.9: The bounding box of Italy.

The bounding box problem regards the shape that a bounding box defines.
In fact these area are rectangular and then they contains more than one
country or continent. Hence the Spacetime research, produces a set of results
that is not totally correct. In fact part of this results set is composed by

Chapter 5. Spacetime 50

resources that belong to a di↵erent country respect to the one chosen by
the user for its research. This because the bounding box, filters the results
outside the area that it defines, but it considers all the results inside it,
including those that belong to a di↵erent country from the one chosen by the
user. For instance, in figure 5.9 we can see that inside the Italy bounding box
are contained part of other countries such as France, Switzerland, Austria,
Slovenia, Hungary, Croatia, Bosnia Herzegovina, Tunisia and Algeria.

This is a problem because Spacetime provides a results set composed by
two parts, a correct subset and a wrong surplus results subset.

Sparql endpoint

The Sparql endpoint problem regards the weakness of this web service. As
described in chapter 3, a sparql endpoint is an interface used for querying a
specific RDF knowledge base associated to it. The main problem is that this
service represents the only entity that connects Spacetime with the DBpedia
dataset. Hence, if the endpoint has a problem, Spacetime can not retrieve
the information that it needs. Then the Sparql endpoint becomes one point
of failure for Spacetime, and makes the application functions set not entirely
available, in the case the endpoint does not work. In fact, when the endpoint
has a problem, the users can not perform a research but they can only load
their own maps and work on them.

The second problem related to the Sparql endpoint regards the query ex-
ecution, in fact it can happen that the following error is returned from the
endpoint:

Virtuoso 42000 Error SQ200: The memory pool size 80871424 reached the
limit 80000000 bytes, try to increase the MaxMemPoolSize ini setting.

In this case Spacetime recognises the anomaly and it shows an error mes-
sage to the user. The problem is that this error is generated performing
researches using certain DBpedia categories, hence the user can not perform
researches using them. This is a limitation for the application but it does
not depend from Spacetime but from the Sparql endpoint memory pool size.

Resource limits

This section concerns the resource limits problem, already discussed in chap-
ter 3.5. This problem regards the uniformity of the DBpedia data and a↵ects
the result quality of the Sparql queries. There are two di↵erent problems that
are the following:

Chapter 5. Spacetime 51

• The first problem regards the resource properties. If we take the set
of the DBpedia resources related to a specific category, we notice that
not all of them have all the properties defined in the category. For
instance, taking the Film category, only 30943 resources of the 71715
belonging to it, have the property releaseDate. Therefore the quality
of the query results is very a↵ected by this aspects because the 43%
of the resources belonging to this specific category can not be queried
by Spacetime. This because these resources don’t have the property
needed for being queried.

• The second problem regards the membership resource category. As de-
scribed in chapter 2.1.3 DBpedia uses an ontology that is a hierarchical
representation of categories. Hence each resource belongs to a category
of the ontology. The problem is that sometimes the resources are asso-
ciated to a category that is too generic. For instance, the Pink Floyd
music band has Organisation as category instead of Band that is an
ontology child of Organisation. Analysing this case, we can understand
that this is a problem for Spacetime because the users can perform a
research on Band and expects to find Pink Floyd in the results without
finding it.

Chapter 6

Use Cases

This chapter is dedicated to some Spacetime use cases and it proposes some
hypothetical future implementations. The following description contains
some significative functions included in the application and some features
that could be added to Spacetime in the future implementations.

The first section related to the use cases is also part of the application. In
fact Spacetime includes an area, called Spacetime Demo, that shows to the
user what are the main functionalities of the application providing a demo
for testing them.

6.1 Use cases description

A use case describes a specific use of the application and it gives a useful
example of what an application provides to the user. For this reason, a list
of the main Spacetime use cases is provided below.

• Temporal ranking: Normally when the user performs a research us-
ing Spacetime, it obtains a map containing the results corresponding to
the research and a timeline in which the event are ordered following the
time. In these kind of research there is no indication about the time in
the map, but it is present only in the timeline. The temporal ranking
use case wants to exceed this weakness and provide an order indication
directly in the map. Thus this feature permits to obtain more mean-
ingful maps and in the same time to create a temporal ranking of the
events resulting from a research.

For instance, figure 6.1 and 6.2 show respectively the result of the same
query using the temporal ranking feature or not. It is now clear, the

52

Chapter 6. Use Cases 53

di↵erence between a normal research and the temporal ranking one.
The former does not provide any time indication on the map while the
latter suggests for each resource on the map its position in the ranking
using a numbered icon.

In particular, figure 6.1 shows the results of a query performed over
University as category, United States of America as space and 1900
and 1910 as time range. It is important to note that the time filter
is set to founding date, then the results on the timeline are ordered
exactly following the university founding date. The temporal ranking
feature allows to bring this temporal order also on the map and improve
the visual meaning of the map. The final result, shows in figure 6.1, is
the founding temporal ranking of the universities in the United States
of America between 1900 and 1910.

The user can activate this feature just by clicking on the temporal
ranking button collocated in the Spacetime function bar on the bottom
of the Spacetime control panel.

Figure 6.1: The universities founding between 1900 and 1910 in the USA
using the temporal ranking feature.

Chapter 6. Use Cases 54

Figure 6.2: The universities founding between 1900 and 1910 in the USA
without using the temporal ranking feature.

• Heat map evolution: This use case, called heat map evolution, shows
how the events resulting from a certain research change during the
sliding of a particular time range. Spacetime implements this feature
using the heat map functionality of Google Maps API v3, that allows
to transform a Google map from the normal markers visualisation to
a heat map that indicates the density of the markers using a colour
gradient. The power of this functionality with Javascript can produce
an animation in which the heat map density changes according to the
number of events in a certain time instant.

As we can see from figure 6.3, during the animation, Spacetime provides
only the map and a time slider. In fact the timeline disappears but a
time slider indicating the sliding of the time is included in the top
right of the map. In this way the user can see the geographical density
variation of the events taking into account also the time, looking at the
map and at the time slider.

The user can activate this feature just by clicking on heat map and
the time sliding button collocated in the Spacetime function bar on the
bottom of the Spacetime control panel.

Chapter 6. Use Cases 55

Figure 6.3: A screen shot of the heat map animation of the european military
conflict during the Second World War.

• Time sliding animation: This use case consists of a time animation,
in which the events belonging to a certain research are added to the
map one by one following their temporal order. In this use case, the
user interface is equipped by a map, a timeline and a time slider. These
three elements are coordinated for providing a temporal animation in
which each time a marker is added to the map, the corresponding event
on the timeline is highlighted and the time value in the time slider is
updated. As we can see from figure 6.4, the time slider in the top right
corner indicates the current year and the month in which the animation
is arrived, the timeline highlights in red colour the events already added
to map while the map render each marker with a top down animation.

The time sliding animation is a useful tool because it provides addi-
tional information to the user. In fact looking at the animation the user
can understand which events happens before the other and remembers
where they are collocated on the map before the map is totally ready.
Thus the user can take some indications about some of the events inside
a map before consulting it. Hence this functionality can be used only
for making animations but also for helping the user in its researches.

Figure 6.4 is a screenshot of the animation that shows the persons born

Chapter 6. Use Cases 56

in India from 1869 and 1875. On the top right of the figure there is
a time slider indicating August 1873 that is the current time denoting
the point in which the animation is arrived. The timeline is perfectly
synchronised with the time slider in fact it shows as last red highlighted
point the event of August 1873.

Figure 6.4: A screenshot of the animation map of the persons born in India
between 1869 and 1875.

• Map Aggregation: Tipically, performing a research with Spacetime
means selects a Spacetime category, a country or a continent and a time
range indicated by two dates. The result set is composed by the events
of the category, country and time range choosen. This is exactly what
the application wants to provide to the user but sometimes this is not
enough. In fact it could happen that the user wants to display on the
same map the results of two di↵erent researches. For instance, what
if a user wants to join a research performed using time range 1500-
1525 with another one performed using time range 1575-1600, without
include the events between 1525-1575? The answer is map aggregation,
a feature for aggregating di↵erent researches in the same map.

This functionality allows user to create maps that contains for in-
stance: events belonging to di↵erent time range, events residing in

Chapter 6. Use Cases 57

di↵erent countries or continents and events regarding di↵erent cate-
gories. These maps could be composed by writers and books, athletes
and sports events, elections performed in Italy, France and Germany or
music festival placed in United Kingdom and United States of Amer-
ica. Moreover it is possible to join maps with di↵erent category, time
range and country such as the map containing the italian movies of the
90’ and the french film festival of the 80’.

Figure 6.5 shows the aggregation of several maps that di↵ers from the
country on which the relative research was performed. The map in
the figure is the result of the aggregation of seven maps performed
respectively using China, Vietnam, Taiwan, Philippines, Japan, North
Korea and South Korea as country in the research. As we can see from
the figure, the map aggregation used in combination with the possibility
of changing the icon of a specific research, allows to distinguish better
the results on the map.

Figure 6.5: A screenshot of the aggregation map resulting by the joining of
the military conflict of China, Vietnam, Taiwan, Philippines, Japan, North
Korea and South Korea.

• Map aggregation 2: We described in the previous use case what is
the map aggregation, we analyse now another example of map aggrega-

Chapter 6. Use Cases 58

tion that is quite di↵erent from the previous one. The example shown
in figure 6.6 represents a summary of all the events associated to the
football player Zinedine Zidane. The map is composed by the aggre-
gation of several maps that di↵ers by their category, time range and
country. In fact as we can in the figure there are events placed in Italy,
France, Spain, Germany, Netherlands and United Kingdom. Moreover
these events belong to di↵erent category that are Person in the case of
the marker indicating the born of the player, soccer team in the case
of the foundation event of one of the team of the Zidane and football
match for the remain markers indicating some of the most important
victories and loss of the player.

The particularity of the map is given by the complexity of building it.
In fact it is not possible to create automatically a map that contains
all the events related to a person using Spacetime because not all the
resources contains all the references of all the person that are involved
in. Then constructing this kind of map needs more time and a signif-
icant background by the user about the context on which is going to
perform its researches.

Figure 6.6: The more important events of the Zinedine Zidane soccer carrier.

Chapter 6. Use Cases 59

6.1.1 Future Implementations

This section illustrates some future implementations that could be extensions
of the existing version of the application.

• Add-hoc extension: Once the application is ready and equipped with
its set of features, it is possible to include some additional add-hoc
functionalities. For instance, supposing we are performing a research
on Writers and consulting a certain writer in the result set, supposing
Pier Paolo Pasolini. It would be interesting for the user to know who
are the writers influenced by Pasolini and who have influenced Pasolini.

This task is easily implementable in Spacetime but it remains an add-
hoc functionality available only for Writers. Then the idea behind the
add-hoc extensions is to select the most interesting categories in Space-
time and extend the application for making possible interaction such
as the influences of a writer, the commander of a battle, the stadium
of a sportive competition or whatever is not included in the resource
abstract showed by Spacetime.

Chapter 7

Conclusions

The aim of the application developed during the internship was:

• Construct an application able to solve the user interface usability prob-
lem of the existing applications based on DBpedia;

• Construct a new application, di↵erent from the existing ones, that pro-
vides a possible real tool for users.

The resulting application provides a method for extracting data from
DBpedia using a simple interface based on two main objects: a Google map
and a timeline. This interface shows in a clear way the results obtained by
the user requests.

Moreover it uses only the resources in the DBpedia dataset that have a
spatial and temporal property. In this way the application restricts the huge
amount of data inside the DBpedia dataset.

Finally Spacetime provides a new tool, di↵erent from the existing appli-
cations based on DBpedia, that could be a new way of searching information.

60

Bibliography

[1] Sören Auer et al. “Dbpedia: A nucleus for a web of open data”. In: The
Semantic Web (2007), pp. 722–735.

[2] Tim Berners-Lee. “Linked data-design issues”. In: (2006).

[3] Christian Bizer et al. “DBpedia-A crystallization point for the Web of
Data”. In: Web Semantics: Science, Services and Agents on the World
Wide Web 7.3 (2009), pp. 154–165.

[4] Diego Valerio Camarda, Silvia Mazzini, and Alessandro Antonuccio.
“LodLive, exploring the web of data”. In: Proceedings of the 8th In-
ternational Conference on Semantic Systems. ACM. 2012, pp. 197–200.

[5] Rasmus Hahn et al. “Faceted wikipedia search”. In: Business Informa-
tion Systems. Springer. 2010, pp. 1–11.

[6] Steve Harris and Andy Seaborne. “SPARQL 1.1 query language”. In:
W3C Working Draft 14 (2010).

[7] Philipp Heim, Jürgen Ziegler, and Ste↵en Lohmann. “gFacet: A Browser
for the Web of Data”. In: Proceedings of the International Workshop on
Interacting with Multimedia Content in the Social Semantic Web (IMC-
SSW’08). Vol. 417. Citeseer. 2008, pp. 49–58.

[8] Graham Klyne, Jeremy J Carroll, and Brian McBride. “Resource de-
scription framework (RDF): Concepts and abstract syntax”. In: W3C
recommendation 10 (2004).

[9] Talis podcasts.s3.amazonaws.com. Sir Tim Berners-Lee Talks with Talis
about the Semantic Web. 2012. url: http://talis-podcasts.s3.ama
zonaws.com/twt20080207_TimBL.html.

I

http://talis-podcasts.s3.amazonaws.com/twt20080207_TimBL.html
http://talis-podcasts.s3.amazonaws.com/twt20080207_TimBL.html

	Introduction
	DBpedia
	DBpedia Project
	What is DBpedia?
	DBpedia Knowledge Base
	DBpedia Ontology
	DBpedia Knowledge Extraction Framework

	Sparql Language
	The First Sparql Query
	Sparql Query Forms
	Sparql Operators
	Complex Queries
	Building a complex query
	Other complex queries

	Problems And Limits

	Applications
	gFacet
	LodLive
	Faceted Wikipedia Search
	Applications Comparison
	Other Applications

	Spacetime
	Spacetime
	Spacetime Idea
	Spacetime categories
	Use Case Diagram
	Spacetime Functionalities
	GUI Design

	Spacetime Technical Description
	Architectural Structure
	Timeline
	Technologies used
	Sparql queries
	Problems

	Use Cases
	Use cases description
	Future Implementations

	Conclusions
	Bibliography

